1
|
Pfeffer S, Woellhaf MW, Herrmann JM, Förster F. Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nat Commun 2015; 6:6019. [PMID: 25609543 DOI: 10.1038/ncomms7019] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 12/02/2014] [Indexed: 11/09/2022] Open
Abstract
Whereas the structure and function of cytosolic ribosomes have been studied in great detail, we know surprisingly little about the structural basis of mitochondrial protein synthesis. Here we used cryoelectron tomography and subtomogram analysis to visualize mitoribosomes in isolated yeast mitochondria, avoiding perturbations during ribosomal purification. Most mitoribosomes reside in immediate proximity to the inner mitochondrial membrane, in line with their specialization in the synthesis of hydrophobic membrane proteins. The subtomogram average of membrane-associated mitoribosomes reveals two distinct membrane contact sites, formed by the 21S rRNA expansion segment 96-ES1 and the inner membrane protein Mba1. On the basis of our data, we further hypothesize that Mba1 is not just a passive mitoribosome receptor on the inner membrane, but that it spatially aligns mitoribosomes with the membrane insertion machinery. This study reveals detailed insights into the supramolecular organization of the mitochondrial translation machinery and its association with the inner membrane in translation-competent mitochondria.
Collapse
Affiliation(s)
- Stefan Pfeffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Michael W Woellhaf
- Cell Biology, University of Kaiserslautern, Erwin-Schrodinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, Erwin-Schrodinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
2
|
Lee J, Seol MY, Jeong S, Lee CR, Ku CR, Kang SW, Jeong JJ, Shin DY, Nam KH, Lee EJ, Chung WY, Jo YS. A metabolic phenotype based on mitochondrial ribosomal protein expression as a predictor of lymph node metastasis in papillary thyroid carcinoma. Medicine (Baltimore) 2015; 94:e380. [PMID: 25590838 PMCID: PMC4602546 DOI: 10.1097/md.0000000000000380] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming has been regarded as an essential component of malignant transformation. However, the clinical significance of metabolic heterogeneity remains poorly characterized. The aim of this study was to characterize metabolic heterogeneity in thyroid cancers via the analysis of the expression of mitochondrial ribosomal proteins (MRPs) and genes involved in oxidative phosphorylation (OxPhos), and investigate potential prognostic correlations. Gene set enrichment analysis (GSEA) verified by reverse transcription polymerase chain reaction and gene network analysis was performed using public repository data. Cross-sectional observational study was conducted to classify papillary thyroid cancer (PTC) by the expression of MRP L44 (MRPL44) messenger RNA (mRNA), and to investigate the clinicopathological features. GSEA clearly showed that the expression of OxPhos and MRP gene sets was significantly lower in primary thyroid cancer than in matched normal thyroid tissue. However, 8 of 49 primary thyroid tumors (16.3%) in the public repository did not show a reduction in OxPhos mRNA expression. Remarkably, strong positive correlations between MRPL44 expression and those of OxPhos and MRPs such as reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) 1 α subcomplex, 5; succinate dehydrogenase complex, subunit D; cytochrome c, somatic; adenosine triphosphate synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9); and MRP S5 (MRPS5) (P < 0.0001) were clearly denoted, suggesting that MRPL44 is a representative marker of OxPhos and MRP expressions. In laboratory experiments, metabolic heterogeneity in oxygen consumption, extracellular acidification rates (ECARs), and amounts of OxPhos complexes were consistently observed in BCPAP, TPC1, HTH-7, and XTC.UC1 cell lines. In PTCs, metabolic phenotype according to OxPhos amount defined by expression of MRPL44 mRNA was significantly related to lymph node metastasis (LNM) (P < 0.001). Furthermore, multivariate analysis clearly indicated that expression of MRPL44 is associated with an increased risk of lateral neck LNM (odds ratio 9.267, 95% confidence interval 1.852-46.371, P = 0.007). MRPL44 expression may be a representative marker of metabolic phenotype according to OxPhos amount and a useful predictor of LNM.
Collapse
Affiliation(s)
- Jandee Lee
- From the Department of Surgery (JL, M-YS, CRL, S-WK, JJJ, K-HN, WYC); and the Department of Internal Medicine (SJ, CRK, DYS, EJL, YSJ), Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Dalla Rosa I, Durigon R, Pearce SF, Rorbach J, Hirst EMA, Vidoni S, Reyes A, Brea-Calvo G, Minczuk M, Woellhaf MW, Herrmann JM, Huynen MA, Holt IJ, Spinazzola A. MPV17L2 is required for ribosome assembly in mitochondria. Nucleic Acids Res 2014; 42:8500-15. [PMID: 24948607 PMCID: PMC4117752 DOI: 10.1093/nar/gku513] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MPV17 is a mitochondrial protein of unknown function, and mutations in MPV17 are associated with mitochondrial deoxyribonucleic acid (DNA) maintenance disorders. Here we investigated its most similar relative, MPV17L2, which is also annotated as a mitochondrial protein. Mitochondrial fractionation analyses demonstrate MPV17L2 is an integral inner membrane protein, like MPV17. However, unlike MPV17, MPV17L2 is dependent on mitochondrial DNA, as it is absent from ρ(0) cells, and co-sediments on sucrose gradients with the large subunit of the mitochondrial ribosome and the monosome. Gene silencing of MPV17L2 results in marked decreases in the monosome and both subunits of the mitochondrial ribosome, leading to impaired protein synthesis in the mitochondria. Depletion of MPV17L2 also induces mitochondrial DNA aggregation. The DNA and ribosome phenotypes are linked, as in the absence of MPV17L2 proteins of the small subunit of the mitochondrial ribosome are trapped in the enlarged nucleoids, in contrast to a component of the large subunit. These findings suggest MPV17L2 contributes to the biogenesis of the mitochondrial ribosome, uniting the two subunits to create the translationally competent monosome, and provide evidence that assembly of the small subunit of the mitochondrial ribosome occurs at the nucleoid.
Collapse
Affiliation(s)
- Ilaria Dalla Rosa
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Romina Durigon
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Sarah F Pearce
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Joanna Rorbach
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | - Sara Vidoni
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Aurelio Reyes
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Gloria Brea-Calvo
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Michael W Woellhaf
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, Netherlands
| | - Ian J Holt
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | |
Collapse
|
4
|
Vázquez-Acevedo M, Rubalcava-Gracia D, González-Halphen D. In vitro import and assembly of the nucleus-encoded mitochondrial subunit III of cytochrome c oxidase (Cox3). Mitochondrion 2014; 19 Pt B:314-22. [PMID: 24561572 DOI: 10.1016/j.mito.2014.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/24/2014] [Accepted: 02/12/2014] [Indexed: 11/17/2022]
Abstract
The cox3 gene, encoding subunit III of cytochrome c oxidase (Cox3) is in mitochondrial genomes except in chlorophycean algae, where it is localized in the nucleus. Therefore, algae like Chlamydomonas reinhardtii, Polytomella sp. and Volvox carteri, synthesize the Cox3 polypeptide in the cytosol, import it into mitochondria, and integrate it into the cytochrome c oxidase complex. In this work, we followed the in vitro internalization of the Cox3 precursor by isolated, import-competent mitochondria of Polytomella sp. In this colorless alga, the precursor Cox3 protein is synthesized with a long, cleavable, N-terminal mitochondrial targeting sequence (MTS) of 98 residues. In an import time course, a transient Cox3 intermediate was identified, suggesting that the long MTS is processed more than once. The first processing step is sensitive to the metalo-protease inhibitor 1,10-ortophenantroline, suggesting that it is probably carried out by the matrix-located Mitochondrial Processing Protease. Cox3 is readily imported through an energy-dependent import pathway and integrated into the inner mitochondrial membrane, becoming resistant to carbonate extraction. Furthermore, the imported Cox3 protein was assembled into cytochrome c oxidase, as judged by the presence of a labeled band co-migrating with complex IV in Blue Native Electrophoresis. A model for the biogenesis of Cox3 in chlorophycean algae is proposed. This is the first time that the in vitro mitochondrial import of a cytosol-synthesized Cox3 subunit is described.
Collapse
Affiliation(s)
- Miriam Vázquez-Acevedo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, México 04510, D.F., Mexico
| | - Diana Rubalcava-Gracia
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, México 04510, D.F., Mexico
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, México 04510, D.F., Mexico.
| |
Collapse
|
5
|
Kim SJ, Kwon MC, Ryu MJ, Chung HK, Tadi S, Kim YK, Kim JM, Lee SH, Park JH, Kweon GR, Ryu SW, Jo YS, Lee CH, Hatakeyama H, Goto YI, Yim YH, Chung J, Kong YY, Shong M. CRIF1 is essential for the synthesis and insertion of oxidative phosphorylation polypeptides in the mammalian mitochondrial membrane. Cell Metab 2012; 16:274-83. [PMID: 22819524 DOI: 10.1016/j.cmet.2012.06.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 02/10/2012] [Accepted: 06/22/2012] [Indexed: 11/27/2022]
Abstract
Although substantial progress has been made in understanding the mechanisms underlying the expression of mtDNA-encoded polypeptides, the regulatory factors involved in mitoribosome-mediated synthesis and simultaneous insertion of mitochondrial oxidative phosphorylation (OXPHOS) polypeptides into the inner membrane of mitochondria are still unclear. In the present study, disruption of the mouse Crif1 gene, which encodes a mitochondrial protein, resulted in a profound deficiency in OXPHOS caused by the disappearance of OXPHOS subunits and complexes in vivo. CRIF1 was associated with large mitoribosomal subunits that were located close to the polypeptide exit tunnel, and the elimination of CRIF1 led to both aberrant synthesis and defective insertion of mtDNA-encoded nascent OXPHOS polypeptides into the inner membrane. CRIF1 interacted with nascent OXPHOS polypeptides and molecular chaperones, e.g., Tid1. Taken together, these results suggest that CRIF1 plays a critical role in the integration of OXPHOS polypeptides into the mitochondrial membrane in mammals.
Collapse
Affiliation(s)
- Soung Jung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
In Polytomella sp. mitochondria, biogenesis of the heterodimeric COX2 subunit of cytochrome c oxidase requires two different import pathways. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:819-27. [DOI: 10.1016/j.bbabio.2012.02.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 02/28/2012] [Accepted: 02/28/2012] [Indexed: 11/22/2022]
|
7
|
Katsuda C, Niiyama K, Obana E, Yamamoto T, Katou Y, Kataoka M, Ohkura K, Shinohara Y. Specific formation of trypsin-resistant micelles on a hydrophobic peptide observed with Triton X-100 but not with octylglucoside. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2090-3. [DOI: 10.1016/j.bbamem.2010.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 06/30/2010] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
|