2
|
Wang P, Pleskot R, Zang J, Winkler J, Wang J, Yperman K, Zhang T, Wang K, Gong J, Guan Y, Richardson C, Duckney P, Vandorpe M, Mylle E, Fiserova J, Van Damme D, Hussey PJ. Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nat Commun 2019; 10:5132. [PMID: 31723129 PMCID: PMC6853982 DOI: 10.1038/s41467-019-12782-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
The Arabidopsis EH proteins (AtEH1/Pan1 and AtEH2/Pan1) are components of the endocytic TPLATE complex (TPC) which is essential for endocytosis. Both proteins are homologues of the yeast ARP2/3 complex activator, Pan1p. Here, we show that these proteins are also involved in actin cytoskeleton regulated autophagy. Both AtEH/Pan1 proteins localise to the plasma membrane and autophagosomes. Upon induction of autophagy, AtEH/Pan1 proteins recruit TPC and AP-2 subunits, clathrin, actin and ARP2/3 proteins to autophagosomes. Increased expression of AtEH/Pan1 proteins boosts autophagosome formation, suggesting independent and redundant pathways for actin-mediated autophagy in plants. Moreover, AtEHs/Pan1-regulated autophagosomes associate with ER-PM contact sites (EPCS) where AtEH1/Pan1 interacts with VAP27-1. Knock-down expression of either AtEH1/Pan1 or VAP27-1 makes plants more susceptible to nutrient depleted conditions, indicating that the autophagy pathway is perturbed. In conclusion, we identify the existence of an autophagy-dependent pathway in plants to degrade endocytic components, starting at the EPCS through the interaction among AtEH/Pan1, actin cytoskeleton and the EPCS resident protein VAP27-1. Arabidopsis EH/Pan1 proteins are part of the TPLATE complex (TPC) that is required for endocytosis in plants. Here, the authors show AtEH/Pan1 proteins also act in actin-mediated autophagy, by interacting with VAP27-1 at ER-PM contact sites and recruiting TPLATE and AP-2 complex subunits, clathrin and ARP2/3/ proteins to autophagosomes.
Collapse
Affiliation(s)
- Pengwei Wang
- Department of Biosciences, Durham University, South road, Durham, DH1 3LE, UK.,Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| | - Roman Pleskot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Jingze Zang
- Department of Biosciences, Durham University, South road, Durham, DH1 3LE, UK.,Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| | - Joanna Winkler
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Jie Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Tong Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| | - Kun Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| | - Jinli Gong
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| | - Yajie Guan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| | | | - Patrick Duckney
- Department of Biosciences, Durham University, South road, Durham, DH1 3LE, UK
| | - Michael Vandorpe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Jindriska Fiserova
- Department of Biosciences, Durham University, South road, Durham, DH1 3LE, UK.,Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, Prague, 14200, Czech Republic
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium. .,VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium.
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South road, Durham, DH1 3LE, UK.
| |
Collapse
|
3
|
Moschou PN, Savenkov EI, Minina EA, Fukada K, Reza SH, Gutierrez-Beltran E, Sanchez-Vera V, Suarez MF, Hussey PJ, Smertenko AP, Bozhkov PV. EXTRA SPINDLE POLES (Separase) controls anisotropic cell expansion in Norway spruce (Picea abies) embryos independently of its role in anaphase progression. THE NEW PHYTOLOGIST 2016; 212:232-243. [PMID: 27229374 DOI: 10.1111/nph.14012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
The caspase-related protease separase (EXTRA SPINDLE POLES, ESP) plays a major role in chromatid disjunction and cell expansion in Arabidopsis thaliana. Whether the expansion phenotypes are linked to defects in cell division in Arabidopsis ESP mutants remains elusive. Here we present the identification, cloning and characterization of the gymnosperm Norway spruce (Picea abies, Pa) ESP. We used the P. abies somatic embryo system and a combination of reverse genetics and microscopy to explore the roles of Pa ESP during embryogenesis. Pa ESP was expressed in the proliferating embryonal mass, while it was absent in the suspensor cells. Pa ESP associated with kinetochore microtubules in metaphase and then with anaphase spindle midzone. During cytokinesis, it localized on the phragmoplast microtubules and on the cell plate. Pa ESP deficiency perturbed anisotropic expansion and reduced mitotic divisions in cotyledonary embryos. Furthermore, whilst Pa ESP can rescue the chromatid nondisjunction phenotype of Arabidopsis ESP mutants, it cannot rescue anisotropic cell expansion. Our data demonstrate that the roles of ESP in daughter chromatid separation and cell expansion are conserved between gymnosperms and angiosperms. However, the mechanisms of ESP-mediated regulation of cell expansion seem to be lineage-specific.
Collapse
Affiliation(s)
- Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | - Eugene I Savenkov
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | - Elena A Minina
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, SE-75007, Uppsala, Sweden
| | - Kazutake Fukada
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | - Salim Hossain Reza
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, SE-75007, Uppsala, Sweden
| | - Emilio Gutierrez-Beltran
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, SE-75007, Uppsala, Sweden
| | - Victoria Sanchez-Vera
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | - Maria F Suarez
- Departamento de Biologia Molecular y Bioquimica, Facultad de Ciencias, Universidad de Malaga, 290071, Malaga, Spain
| | - Patrick J Hussey
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE, UK
| | - Andrei P Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
- Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Peter V Bozhkov
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, SE-75007, Uppsala, Sweden
| |
Collapse
|
4
|
Belcram K, Palauqui JC, Pastuglia M. Studying Cell Division Plane Positioning in Early-Stage Embryos. Methods Mol Biol 2016; 1370:183-195. [PMID: 26659963 DOI: 10.1007/978-1-4939-3142-2_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Unraveling the mechanisms that govern division plane orientation is a major challenge to understand plant development. In this respect, the Arabidopsis early embryo is a model system of choice since embryogenesis is relatively simple and cell division planes orientation is highly predictable. Here, we present an integrated set of protocols to study 3D cell division patterns in early-stage Arabidopsis embryos that combine both cellular and sub-cellular localization of selected protein markers with spatial organization of cells, cytoskeleton, and nuclei.
Collapse
Affiliation(s)
- Katia Belcram
- Institut Jean-Pierre Bourgin (IJPB), INRA, UMR 1318, ERL 3559 CNRS, Saclay Plant Sciences, 78000, Versailles, France.
- Institut Jean-Pierre Bourgin (IJPB), AgroParisTech, UMR 1318, ERL 3559 CNRS, Saclay Plant Sciences, 78000, Versailles, France.
| | - Jean-Christophe Palauqui
- Institut Jean-Pierre Bourgin (IJPB), INRA, UMR 1318, ERL 3559 CNRS, Saclay Plant Sciences, 78000, Versailles, France
- Institut Jean-Pierre Bourgin (IJPB), AgroParisTech, UMR 1318, ERL 3559 CNRS, Saclay Plant Sciences, 78000, Versailles, France
| | - Martine Pastuglia
- Institut Jean-Pierre Bourgin (IJPB), INRA, UMR 1318, ERL 3559 CNRS, Saclay Plant Sciences, 78000, Versailles, France
- Institut Jean-Pierre Bourgin (IJPB), AgroParisTech, UMR 1318, ERL 3559 CNRS, Saclay Plant Sciences, 78000, Versailles, France
| |
Collapse
|
5
|
Nic-Can G, Hernández-Castellano S, Kú-González A, Loyola-Vargas VM, De-la-Peña C. An efficient immunodetection method for histone modifications in plants. PLANT METHODS 2013; 9:47. [PMID: 24341414 PMCID: PMC3868413 DOI: 10.1186/1746-4811-9-47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/02/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND Epigenetic mechanisms can be highly dynamic, but the cross-talk among them and with the genome is still poorly understood. Many of these mechanisms work at different places in the cell and at different times of organism development. Covalent histone modifications are one of the most complex and studied epigenetic mechanisms involved in cellular reprogramming and development in plants. Therefore, the knowledge of the spatial distribution of histone methylation in different tissues is important to understand their behavior on specific cells. RESULTS Based on the importance of epigenetic marks for biology, we present a simplified, inexpensive and efficient protocol for in situ immunolocalization on different tissues such as flowers, buds, callus, somatic embryo and meristematic tissue from several plants of agronomical and biological importance. Here, we fully describe all the steps to perform the localization of histone modifications. Using this method, we were able to visualize the distribution of H3K4me3 and H3K9me2 without loss of histological integrity of tissues from several plants, including Agave tequilana, Capsicum chinense, Coffea canephora and Cedrela odorata, as well as Arabidopsis thaliana. CONCLUSIONS There are many protocols to study chromatin modifications; however, most of them are expensive, difficult and require sophisticated equipment. Here, we provide an efficient protocol for in situ localization of histone methylation that dispenses with the use of expensive and sensitive enzymes. The present method can be used to investigate the cellular distribution and localization of a wide array of proteins, which could help to clarify the biological role that they play at specific times and places in different tissues of various plant species.
Collapse
Affiliation(s)
- Geovanny Nic-Can
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida CP 97200, Yucatán, México
| | - Sara Hernández-Castellano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida CP 97200, Yucatán, México
| | - Angela Kú-González
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida CP 97200, Yucatán, México
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida CP 97200, Yucatán, México
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida CP 97200, Yucatán, México
| |
Collapse
|