1
|
Affiliation(s)
- Jie Wang
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
2
|
Liu G, Arnaud P, Offmann B, Picimbon JF. Genotyping and Bio-Sensing Chemosensory Proteins in Insects. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1801. [PMID: 28777348 PMCID: PMC5579523 DOI: 10.3390/s17081801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/20/2022]
Abstract
Genotyping is the process of determining differences in the genetic make-up of an individual and comparing it to that of another individual. Focus on the family of chemosensory proteins (CSPs) in insects reveals differences at the genomic level across various strains and biotypes, but none at the level of individuals, which could be extremely useful in the biotyping of insect pest species necessary for the agricultural, medical and veterinary industries. Proposed methods of genotyping CSPs include not only restriction enzymatic cleavage and amplification of cleaved polymorphic sequences, but also detection of retroposons in some specific regions of the insect chromosome. Design of biosensors using CSPs addresses tissue-specific RNA mutations in a particular subtype of the protein, which could be used as a marker of specific physiological conditions. Additionally, we refer to the binding properties of CSP proteins tuned to lipids and xenobiotic insecticides for the development of a new generation of biosensor chips, monitoring lipid blood concentration and chemical environmental pollution.
Collapse
Affiliation(s)
- Guoxia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Philippe Arnaud
- Protein Engineering and Functionality Unit, University of Nantes, Nantes 44322, France.
| | - Bernard Offmann
- Protein Engineering and Functionality Unit, University of Nantes, Nantes 44322, France.
| | - Jean-François Picimbon
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
- QILU University of Technology, School of Bioengineering, Jinan 250353, China.
| |
Collapse
|
3
|
Abstract
The term 'undruggable' was coined to describe proteins that could not be targeted pharmacologically. However, progress is being made to 'drug' many of these targets, and therefore more appropriate terms might be 'difficult to drug' or 'yet to be drugged'. Many desirable targets in cancer fall into this category, including the RAS and MYC oncogenes, and pharmacologically targeting these intractable proteins is now a key challenge in cancer research that requires innovation and the development of new technologies. In this Viewpoint article, we asked four scientists working in this field for their opinions on the most crucial advances, as well as the challenges and what the future holds for this important area of research.
Collapse
Affiliation(s)
- Chi V. Dang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Present addresses: Ludwig Institute for Cancer Research, New York, New York 10017, USA, and The Wistar Institute, Philadelphia, Pennsylvania 19104, USA or
| | - E. Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, USA
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco & Howard Hughes Medical Institute, San Francisco, California 94158, USA.
| | - Laura Soucek
- Vall d’Hebron Institute of Oncology (VHIO), Cellex Centre, Barcelona 08035; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010; and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
4
|
Roth CM. Delivery of Genes and Oligonucleotides. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
5
|
Zhang L, Holmes IP, Hochgräfe F, Walker SR, Ali NA, Humphrey ES, Wu J, de Silva M, Kersten WJA, Connor T, Falk H, Allan L, Street IP, Bentley JD, Pilling PA, Monahan BJ, Peat TS, Daly RJ. Characterization of the novel broad-spectrum kinase inhibitor CTx-0294885 as an affinity reagent for mass spectrometry-based kinome profiling. J Proteome Res 2013; 12:3104-16. [PMID: 23692254 DOI: 10.1021/pr3008495] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Kinase enrichment utilizing broad-spectrum kinase inhibitors enables the identification of large proportions of the expressed kinome by mass spectrometry. However, the existing inhibitors are still inadequate in covering the entire kinome. Here, we identified a novel bisanilino pyrimidine, CTx-0294885, exhibiting inhibitory activity against a broad range of kinases in vitro, and further developed it into a Sepharose-supported kinase capture reagent. Use of a quantitative proteomics approach confirmed the selectivity of CTx-0294885-bound beads for kinase enrichment. Large-scale CTx-0294885-based affinity purification followed by LC-MS/MS led to the identification of 235 protein kinases from MDA-MB-231 cells, including all members of the AKT family that had not been previously detected by other broad-spectrum kinase inhibitors. Addition of CTx-0294885 to a mixture of three kinase inhibitors commonly used for kinase-enrichment increased the number of kinase identifications to 261, representing the largest kinome coverage from a single cell line reported to date. Coupling phosphopeptide enrichment with affinity purification using the four inhibitors enabled the identification of 799 high-confidence phosphosites on 183 kinases, ∼10% of which were localized to the activation loop, and included previously unreported phosphosites on BMP2K, MELK, HIPK2, and PRKDC. Therefore, CTx-0294885 represents a powerful new reagent for analysis of kinome signaling networks that may facilitate development of targeted therapeutic strategies. Proteomics data have been deposited to the ProteomeXchange Consortium ( http://proteomecentral.proteomexchange.org ) via the PRIDE partner repository with the data set identifier PXD000239.
Collapse
Affiliation(s)
- Luxi Zhang
- Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sun D, Zhuang X, Zhang S, Deng ZB, Grizzle W, Miller D, Zhang HG. Exosomes are endogenous nanoparticles that can deliver biological information between cells. Adv Drug Deliv Rev 2013; 65:342-7. [PMID: 22776312 DOI: 10.1016/j.addr.2012.07.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/25/2012] [Accepted: 07/01/2012] [Indexed: 12/23/2022]
Abstract
Exosomal particular size of 30-100 nm matches the size criterion for nanoparticles, and opens up the possibility of using exosomes as a nanoparticle drug carrier. More importantly, exosomes released from different types of host cells have different biological effects and targeting specificities. Therefore, depending on the therapeutic goal, different types of exosomes can be combined with specific drugs and serve as carriers so that personalized medicine needs are met. In addition, exosomes do not appear to have cytotoxicity. Based on the perceived advantages of exosomes, they may well serve as a next generation drug delivery mechanism that combines nanoparticle size with a non-cytotoxic effect, target specificity, and a high drug carrying capacity, to make them useful in the treatment of a variety of diseases. This review will focus on exosomes as a biological nanoparticle drug carrier with emphasis on their immune-regulatory activities.
Collapse
|
7
|
Yang F, Jin C, Subedi S, Lee CL, Wang Q, Jiang Y, Li J, Di Y, Fu D. Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment. Cancer Treat Rev 2012; 38:566-79. [PMID: 22655679 DOI: 10.1016/j.ctrv.2012.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/30/2012] [Accepted: 02/02/2012] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is a devastating disease with incidence increasing at an alarming rate and survival not improved substantially during the past three decades. Although enormous efforts have been made in early detection and comprehensive treatment for this disease, little or no survival improvement was obtained, which necessitates the development of novel strategies. Emerging inorganic nanomaterials, such as carbon nanotubes, quantum dots, mesoporous silica/gold/supermagnetic nanoparticles, have been widely used in biomedical research with great optimism for cancer diagnosis and therapy. Such nanoparticles possess unique optical, electrical, magnetic and/or electrochemical properties. With such properties along with their impressive nano-size, these particles can be targeted to cancer cells, tissues, and ligands efficiently and monitored with extreme precision in real-time. In additional to liposome, dendrimer, and polymeric nanoparticles, they are considered the most promising nanomaterials with the capability of both cancer detection and multimodality treatment. Emerging approaches to harness nanotechnology to optimize the existing diagnostic and therapeutic tools for pancreatic cancer have been extensively explored during the recent years. Future options for early detection, individual therapy and monitoring responses of pancreatic cancer are focused on multifunctional nanomedicine. In this review, we present the recent development of clinically applicable inorganic nanoparticles, with focus on the diagnosis and treatment of pancreatic cancer. Furthermore, their advantages in theranostic nanomedicine, and challenges of translation to clinical practice, are discussed.
Collapse
Affiliation(s)
- Feng Yang
- Pancreatic Disease Institute, Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yang X, Peng Y, Yu B, Yu J, Zhou C, Mao Y, Lee LJ, Lee RJ. A covalently stabilized lipid-polycation-DNA (sLPD) vector for antisense oligonucleotide delivery. Mol Pharm 2011; 8:709-15. [PMID: 21366344 DOI: 10.1021/mp100272k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Antisense oligonucleotide G3139 is designed for Bcl-2 downregulation and is known to induce toll-like receptor activation. Novel stabilized lipid-polycation-DNA (sLPD) nanoparticles were constructed and evaluated for the delivery of G3139 to human carcinoma KB cells and for bioactivity in vivo. Polyethylenimine (PEI) was incorporated as a DNA condensing agent. The lipid composition used was DOTAP/DDAB/Chol/TPGS/linoleic acid/hexadecenal at molar ratios of 30/30/34/1/5/0.2. The nanoparticles were stabilized by the formation of a reversible covalent bond between the aldehyde group on the cis-11-hexadecenal and amines on the PEI. When sLPDs were used to transfect KB cells, 90.4% Bcl-2 downregulation was observed, compared to no significant downregulation by free G3139 and 54.6% downregulation by nonstabilized LPD-G3139. The sLPDs were then evaluated for therapeutic efficacy in mice bearing KB subcutaneous tumors and were found to trigger a strong antitumor response, inhibiting tumor growth and prolonging survival with 72% increase in lifespan (ILS). Consistent with previous reports on other G3139 nanoparticles, the increased antitumor activities of sLPDs in vivo were found to be associated with increased cytokine induction rather than Bcl-2 downregulation, suggesting an immunological mechanism.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Glutathione in cancer cell death. Cancers (Basel) 2011; 3:1285-310. [PMID: 24212662 PMCID: PMC3756414 DOI: 10.3390/cancers3011285] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/22/2011] [Accepted: 03/09/2011] [Indexed: 01/08/2023] Open
Abstract
Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.
Collapse
|
10
|
Liposome based delivery systems in pancreatic cancer treatment: from bench to bedside. Cancer Treat Rev 2011; 37:633-42. [PMID: 21330062 DOI: 10.1016/j.ctrv.2011.01.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/15/2011] [Accepted: 01/21/2011] [Indexed: 12/12/2022]
Abstract
Despite rapid advances in cancer diagnosis and treatment, pancreatic cancer remains one of the most difficult human malignancies to be treated, with a mortality rate nearly equal to its incidence. Although gemcitabine has been established as the standard first-line treatment for advanced pancreatic cancer, gemcitabine-based combination chemotherapy showed either marginal or no improvement in survival. Developments in liposomal delivery systems have facilitated the targeting of specific agents for cancer treatment. Such systems could be developed as platforms for future multi-functional theranostic nanodevices tailor-made for the combined detection of early cancer and functional drug delivery. We systemically review liposome based drug-delivery systems, which can provide improved pharmacokinetics, reduced side effects and potentially increased tumor uptake, for pancreatic cancer therapy. Novel liposomal formulations allowing for higher tumor targeting efficiencies and used in current clinical trials to treat this challenging disease are emphasized.
Collapse
|
11
|
Torigoe H, Maruyama A, Obika S, Imanishi T, Katayama T. Synergistic stabilization of nucleic acid assembly by 2'-O,4'-C-methylene-bridged nucleic acid modification and additions of comb-type cationic copolymers. Biochemistry 2009; 48:3545-53. [PMID: 19170613 DOI: 10.1021/bi801795z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stabilization of nucleic acid assemblies, such as duplex and triplex, is quite important for their wide variety of potential applications. Various stabilization methods, including molecular designs of chemically modified nucleotides and hybrid stabilizers, and combinations of different stabilization methods have been developed to increase stability of nucleic acid assemblies. However, combinations of two stabilizing methods have not always yielded desired synergistic effects. In the present study, to propose a strategy for selection of a rational combination of stabilizing methods, we demonstrate synergistic stabilization of triplex by 2'-O,4'-C-methylene-bridged nucleic acid (2',4'-BNA) modification of triplex-forming oligonucleotide and addition of poly(l-lysine)-graft-dextran copolymer [poly(l-lysine) grafted with hydrophilic dextran side chains]. Each of these methods increased the binding constant for triplex formation by nearly 2 orders of magnitude. However, their kinetic contributions were quite distinct. The copolymer increased the association rate constant, whereas the 2',4'-BNA modification decreased the dissociation rate constant for triplex stabilization. The combination of both stabilizing methods increased the binding constant by nearly 4 orders of magnitude. Kinetic analyses revealed that the successful synergistic stabilization resulted from kinetic complementarity between increased association rate constants by the copolymer and decreased dissociation rate constants by the 2',4'-BNA modification. The stabilizing effect of one stabilization method did not alter that of the other stabilization method. We propose that kinetic analyses of each stabilizing effect permit selection of a rational combination of stabilizing methods for successful synergy in stabilizing nucleic acid assemblies.
Collapse
Affiliation(s)
- Hidetaka Torigoe
- Department of Applied Chemistry, Faculty of Science, Tokyo UniVersity of Science, 1-3 Kagurazaka,Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | | | | | |
Collapse
|
12
|
Zhang C, Newsome JT, Mewani R, Pei J, Gokhale PC, Kasid UN. Systemic delivery and pre-clinical evaluation of nanoparticles containing antisense oligonucleotides and siRNAs. Methods Mol Biol 2009; 480:65-83. [PMID: 19085118 DOI: 10.1007/978-1-59745-429-2_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
By virtue of their potential to selectively silence oncogenic molecules in cancer cells, antisense oligonucleotides (ASO) and small interfering RNAs (siRNAs) are powerful tools for development of tailored anti-cancer drugs. The clinical benefit of ASO/siRNA therapeutic is, however, hampered due to poor pharmacokinetics and biodistribution, and suboptimal suppression of the target in tumor tissues. Raf-1 protein serine/threonine kinase is a druggable signaling molecule in cancer therapy. Our laboratory has developed cationic liposomes for systemic delivery of raf ASO (LErafAON) and raf siRNA (LErafsiRNA) to human tumor xenografts grown in athymic mice. LErafAON is also the first ASO containing liposomal drug tested in humans. In this article, we primarily focus on a modified formulation of systemically delivered cationic liposomes containing raf antisense oligonucleotide (md-LErafAON). The cationic liposomes were prepared using dimyristoyl 1,2-diacyl-3-trimethylammonium-propane (DMTAP), phosphatidylcholine (PC), and cholesterol (CHOL). The toxicology, pharmacokinetics, biodistribution, target selectivity, and anti-tumor efficacy studies of md-LErafAON were conducted in mice. We demonstrate that md-LErafAON is the next generation of systemically delivered and well-tolerated antisense therapeutic suitable for clinical evaluation.
Collapse
Affiliation(s)
- Chuanbo Zhang
- Departments of Radiation Medicine and Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington D.C. 20057, USA
| | | | | | | | | | | |
Collapse
|
13
|
Schopf E, Fischer NO, Chen Y, Tok JBH. Sensitive and selective viral DNA detection assay via microbead-based rolling circle amplification. Bioorg Med Chem Lett 2008; 18:5871-4. [PMID: 18694640 DOI: 10.1016/j.bmcl.2008.07.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/11/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
Abstract
We report a sensitive and efficient magnetic bead-based assay for viral DNA identification using isothermal amplification of a reporting probe.
Collapse
Affiliation(s)
- Eric Schopf
- BioSecurity and NanoSciences Laboratory, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551, USA
| | | | | | | |
Collapse
|
14
|
Spänkuch B, Steinhauser I, Wartlick H, Kurunci-Csacsko E, Strebhardt KI, Langer K. Downregulation of Plk1 expression by receptor-mediated uptake of antisense oligonucleotide-loaded nanoparticles. Neoplasia 2008; 10:223-34. [PMID: 18320067 PMCID: PMC2259452 DOI: 10.1593/neo.07916] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/30/2007] [Accepted: 01/02/2008] [Indexed: 12/13/2022]
Abstract
Human serum albumin (HSA) nanoparticles represent a promising tool for targeted drug delivery to tumor cells. The coupling of the antibody trastuzumab to nanoparticles uses the capability of human epidermal growth factor receptor 2 (HER2)-positive cells to incorporate agents linked to HER2. In our present study, we developed targeted nanoparticles loaded with antisense oligonucleotides (ASOs) against polo-like kinase 1 (Plk1). We evaluated the receptor-mediated uptake into HER2-positive and -negative breast cancer and murine cell lines. We performed quantitative real-time PCR and Western blot analyses to monitor the impact on Plk1 expression in HER2-positive breast cancer cells. Antibody-conjugated nanoparticles showed a specific targeting to HER2-overexpressing cells with cellular uptake by receptor-mediated endocytosis and a release into HER2-positive BT-474 cells. We observed a significant reduction of Plk1 mRNA and protein expression and increased activation of Caspase 3/7. Thus, this is the first report about ASO-loaded HSA nanoparticles, where an impact on gene expression could be observed. The data provide the basis for the further development of carrier systems for Plk1-specific ASOs to reduce off-target effects evoked by systemically administered ASOs and to achieve a better penetration into primary and metastatic target cells. Treatment of tumors using trastuzumab-conjugated ASO-loaded HSA nanoparticles could be a promising approach to reach this goal.
Collapse
Affiliation(s)
- Birgit Spänkuch
- Department of Obstetrics and Gynecology, School of Medicine, Johann Wolfgang Goethe-University, D-60590 Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Minko T, Khandare JJ, Vetcher AA, Soldatenkov VA, Garbuzenko OB, Saad M, Pozharov VP. Multifunctional Nanotherapeutics for Cancer. MULTIFUNCTIONAL PHARMACEUTICAL NANOCARRIERS 2008. [DOI: 10.1007/978-0-387-76554-9_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
16
|
Lee AM, Rojek JM, Gundersen A, Ströher U, Juteau JM, Vaillant A, Kunz S. Inhibition of cellular entry of lymphocytic choriomeningitis virus by amphipathic DNA polymers. Virology 2007; 372:107-17. [PMID: 18022208 DOI: 10.1016/j.virol.2007.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 08/17/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
The prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) represents a powerful experimental model for the study of the basic virology and pathogenesis of arenaviruses. In the present study, we used the LCMV model to evaluate the anti-viral potential of phosphorothioate oligonucleotides against arenaviruses. Our findings indicate that amphipathic DNA polymers (APs) are potent inhibitors of infection with a series of LCMV isolates with IC(50) in the low nanomolar range. APs target the surface glycoprotein (GP) of LCMV and block viral entry and cell-cell propagation of the virus, without affecting later steps in replication or release of progeny virus from infected cells. The anti-viral action of APs is sequence-independent but is critically dependent on their size and hydrophobicity. Mechanistically, we provide evidence that APs disrupt the interaction between LCMVGP and its cellular receptor, alpha-dystroglycan. Exposure of LCMV to APs does not affect the stability of the GP virion spike and has no effect on the conformation of a neutralizing antibody epitope, suggesting rather subtle changes in the conformation and/or conformational dynamics of the viral GP.
Collapse
Affiliation(s)
- Andrew M Lee
- Molecular and Integrative Neurosciences Department (MIND), The Scripps Research Institute, IMM-6, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Epiphenomena are those processes that ostensibly have no precedent at lower levels of scientific organization. In this review, it is argued that many genetic processes, including ploidy, dominance, heritability, pleiotropy, epistasis, mutational load and recombination, all are at least analogous to biochemical events that were requisite features of the RNA world. Most, if not all, of these features of contemporary whole organisms and populations may have their ultimate evolutionary roots in the chemical repertoire of catalytic RNAs. Some of these phenomena will eventually prove to be not only analogous but homologous to ribozyme activities.
Collapse
Affiliation(s)
- N Lehman
- Department of Chemistry, Portland State University, Portland, OR, USA.
| |
Collapse
|