1
|
Kong J, Qiang W, Jiang J, Hu X, Chen Y, Guo Y, Liu H, Sun S, Gao H, Zhang Y, Gao Y, Liu X, Liu X, Li H. Safflower oil body nanoparticles deliver hFGF10 to hair follicles and reduce microinflammation to accelerate hair regeneration in androgenetic alopecia. Int J Pharm 2022; 616:121537. [PMID: 35150848 DOI: 10.1016/j.ijpharm.2022.121537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/19/2022] [Accepted: 01/29/2022] [Indexed: 12/19/2022]
Abstract
Androgenetic alopecia (AGA) affects physical and mental health with limited therapeutic options. Novel materials and delivery methods have considerable potential to improve the current paradigm of treatment. In this study, we used a novel plant nanoparticle of safflower oil body (SOB) loaded with human fibroblast growth factor 10 (hFGF10) to target hair follicles and accelerate hair regeneration in AGA mice with few adverse effects. Our data revealed that the average particle size of SOB-hFGF10 was 226.73 ± 9.98 nm, with a spherical and uniform structure, and that SOB-hFGF10 was quicker to preferentially penetrate into hair follicles than hFGF2 alone. Using a mouse model of AGA, SOB-hFGF10 was found to significantly improve hair regeneration without any significant toxicity. Furthermore, SOB-hFGF10 inhibited dihydrotestosterone (DHT)-induced TNF-α, IL-1β, and IL-6 overproduction in macrophages in relation to hair follicle microinflammation, thereby enhancing the proliferation of dermal papilla cells. Overall, this study provides an applicable therapeutic method through targeting hair follicles and reducing microinflammation to accelerate hair regeneration in AGA.
Collapse
Affiliation(s)
- Jie Kong
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Weidong Qiang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jingyi Jiang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xingli Hu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Yining Chen
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - YongXin Guo
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Hongxiang Liu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Siming Sun
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Hongtao Gao
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yuan Zhang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Yanyan Gao
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xiuming Liu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xin Liu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| | - Haiyan Li
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; College of Tropical Crops, Hainan University, Haikou, China.
| |
Collapse
|
2
|
Temporini C, Colombo R, Calleri E, Tengattini S, Rinaldi F, Massolini G. Chromatographic tools for plant-derived recombinant antibodies purification and characterization. J Pharm Biomed Anal 2020; 179:112920. [DOI: 10.1016/j.jpba.2019.112920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 01/13/2023]
|
3
|
Nykiforuk CL, Boothe JG. Transgenic expression of therapeutic proteins in Arabidopsis thaliana seed. Methods Mol Biol 2012; 899:239-64. [PMID: 22735958 DOI: 10.1007/978-1-61779-921-1_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The production of therapeutic proteins in plant seed augments alternative production platforms such as microbial fermentation, cell-based systems, transgenic animals, and other recombinant plant production systems to meet increasing demands for the existing biologics, drugs under evaluation, and undiscovered therapeutics in the future. We have developed upstream purification technologies for oilseeds which are designed to cost-effectively purify therapeutic proteins amenable to conventional downstream manufacture. A very useful tool in these endeavors is the plant model system Arabidopsis thaliana. The current chapter describes the rationale and methods used to over-express potential therapeutic products in A. thaliana seed for evaluation and definitive insight into whether our production platform, Safflower, can be utilized for large-scale manufacture.
Collapse
|
4
|
Cui L, Peng H, Zhang R, Chen Y, Zhao L, Tang K. Recombinant hHscFv-RC-RNase protein derived from transgenic tobacco acts as a bifunctional molecular complex against hepatocellular carcinoma. Biotechnol Appl Biochem 2012; 59:323-9. [PMID: 23586908 DOI: 10.1002/bab.1039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/09/2012] [Indexed: 01/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common clinical primary malignant tumor; however, efficient drugs for the treatment of HCC are still lacking at the present time. To develop a new approach for liver cancer therapy, we designed a chimeric gene (his-HR) encoding a single-chain variable fragment of human HAb25 (hHscFv) fused to a cytotoxic ribonuclease from Rana catesbeiana (RC-RNase) and expressed the corresponding fusion protein in transgenic tobacco (Nicotiana tabacum). Eleven positive transgenic plant lines were identified from 204 regenerated tobacco plants by PCR and Southern blot analysis, and the immunocompetence of the recombinant his-HR protein was confirmed by Western blotting. The expression levels of his-HR protein ranged from 0.75 to 1.99 µg/g in the fresh tobacco leaves. To characterize the bifunction of the expressed his-HR protein in tobacco, binding specificity and cell toxicity to several cell lines were examined by the indirect immunocytochemical streptavidin-biotin complex method and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. Data indicated that the his-HR protein had stronger specific binding affinity to HepG2 (human liver HCC cell line) than to the other tumor cell lines and normal liver cell line, and the capacity to kill the HCC cell lines SMMC7721 and HepG2 with an half maximal inhibiting concentration of 2.0 and 2.4 nM, respectively. The results suggest that recombinant bifunctional his-HR protein derived from transgenic plants may provide a novel strategy to treat HCC in the future.
Collapse
Affiliation(s)
- Lijie Cui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
5
|
Goulet C, Khalf M, Sainsbury F, D'Aoust MA, Michaud D. A protease activity-depleted environment for heterologous proteins migrating towards the leaf cell apoplast. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:83-94. [PMID: 21895943 DOI: 10.1111/j.1467-7652.2011.00643.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recombinant proteins face major constraints along the plant cell secretory pathway, including proteolytic processing compromising their structural integrity. Here, we demonstrate the potential of protease inhibitors as in situ stabilizing agents for recombinant proteins migrating towards the leaf apoplast. Genomic data for Arabidopsis, rice and Nicotiana spp. were assessed to determine the relative incidence of protease families in the cell secretory pathway. Transient expression assays with the model platform Nicotiana benthamiana were then performed to test the efficiency of protease inhibitors in stabilizing proteins targeted to the apoplast. Current genomic data suggest the occurrence of proteases from several families along the secretory pathway, including A1 and A22 Asp proteases; C1A and C13 Cys proteases; and S1, S8 and S10 Ser proteases. In vitro protease assays confirmed the presence of various proteases in N. benthamiana leaves, notably pointing to the deposition of A1- and S1-type activities preferentially in the apoplast. Accordingly, transient expression and secretion of the A1/S1 protease inhibitor, tomato cathepsin D inhibitor (SlCDI), negatively altered A1 and S1 protease activities in this cell compartment, while increasing the leaf apoplast protein content by ∼45% and improving the accumulation of a murine diagnostic antibody, C5-1, co-secreted in the apoplast. SlCYS9, an inhibitor of C1A and C13 Cys proteases, had no impact on the apoplast proteases and protein content, but stabilized C5-1 in planta, presumably upstream in the secretory pathway. These data confirm, overall, the potential of protease inhibitors for the in situ protection of recombinant proteins along the plant cell secretory pathway.
Collapse
Affiliation(s)
- Charles Goulet
- Département de phytologie, Université Laval, Pavillon des Services (INAF), Québec, QC, Canada
| | | | | | | | | |
Collapse
|
6
|
Komarova TV, Kosorukov VS, Frolova OY, Petrunia IV, Skrypnik KA, Gleba YY, Dorokhov YL. Plant-made trastuzumab (herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth. PLoS One 2011; 6:e17541. [PMID: 21390232 PMCID: PMC3048398 DOI: 10.1371/journal.pone.0017541] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 02/07/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Plant biotechnology provides a valuable contribution to global health, in part because it can decrease the cost of pharmaceutical products. Breast cancer can now be successfully treated by a humanized monoclonal antibody (mAb), trastuzumab (Herceptin). A course of treatment, however, is expensive and requires repeated administrations of the mAb. Here we used an Agrobacterium-mediated transient expression system to produce trastuzumab in plant cells. METHODOLOGY/PRINCIPAL FINDINGS We describe the cloning and expression of gene constructs in Nicotiana benthamiana plants using intron-optimized Tobacco mosaic virus- and Potato virus X-based vectors encoding, respectively, the heavy and light chains of trastuzumab. Full-size antibodies extracted and purified from plant tissues were tested for functionality and specificity by (i) binding to HER2/neu on the surface of a human mammary gland adenocarcinoma cell line, SK-BR-3, in fluorescence-activated cell sorting assay and (ii) testing the in vitro and in vivo inhibition of HER-2-expressing cancer cell proliferation. We show that plant-made trastuzumab (PMT) bound to the Her2/neu oncoprotein of SK-BR-3 cells and efficiently inhibited SK-BR-3 cell proliferation. Furthermore, mouse intraperitoneal PMT administration retarded the growth of xenografted tumors derived from human ovarian cancer SKOV3 Her2+ cells. CONCLUSIONS/SIGNIFICANCE We conclude that PMT is active in suppression of cell proliferation and tumor growth.
Collapse
Affiliation(s)
- Tatiana V. Komarova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Vyacheslav S. Kosorukov
- N.N. Blokhin National Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia
| | - Olga Y. Frolova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Igor V. Petrunia
- N.I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Ksenia A. Skrypnik
- N.N. Blokhin National Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia
| | - Yuri Y. Gleba
- Nomad Bioscience GmbH, Biozentrum Halle, Halle (Saale), Germany
| | - Yuri L. Dorokhov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- N.I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
7
|
Abstract
Recombinant protein pharmaceuticals are now widely used in treatment of chronic diseases, and several recombinant protein subunit vaccines are approved for human and veterinary use. With growing demand for complex protein pharmaceuticals, such as monoclonal antibodies, manufacturing capacity is becoming limited. There is increasing need for safe, scalable, and economical alternatives to mammalian cell culture-based manufacturing systems, which require substantial capital investment for new manufacturing facilities. Since a seminal paper reporting immunoglobulin expression in transgenic plants was published in 1989, there have been many technological advances in plant expression systems to the present time where production of proteins in leaf tissues of nonfood crops such as Nicotiana species is considered a viable alternative. In particular, transient expression systems derived from recombinant plant viral vectors offer opportunities for rapid expression screening, construct optimization, and expression scale-up. Extraction of recombinant proteins from Nicotiana leaf tissues can be achieved by collection of secreted protein fractions, or from a total protein extract after grinding the leaves with buffer. After separation from solids, the major purification challenge is contamination with elements of the photosynthetic complex, which can be solved by application of a variety of facile and proven strategies. In conclusion, the technologies required for safe, efficient, scalable manufacture of recombinant proteins in Nicotiana leaf tissues have matured to the point where several products have already been tested in phase I clinical trials and will soon be followed by a rich pipeline of recombinant vaccines, microbicides, and therapeutic proteins.
Collapse
|
8
|
Duby G, Degand H, Faber AM, Boutry M. The proteome complement of Nicotiana tabacum Bright-Yellow-2 culture cells. Proteomics 2010; 10:2545-50. [PMID: 20405476 DOI: 10.1002/pmic.200900527] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 04/08/2010] [Indexed: 12/16/2023]
Abstract
The Nicotiana tabacum Bright-Yellow-2 (BY2) cell line is one of most commonly used plant suspension cell lines and offers interesting properties, such as fast growth, amenability to genetic transformation, and synchronization of cell division. To build a proteome reference map of BY2 cell proteins, we isolated the soluble proteins from N. tabacum BY2 cells at the end of the exponential growth phase and analyzed them by 2-DE and MALDI TOF-TOF. Of the 1422 spots isolated, 795 were identified with a significant score, corresponding to 532 distinct proteins.
Collapse
Affiliation(s)
- Geoffrey Duby
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
9
|
Pogue GP, Vojdani F, Palmer KE, Hiatt E, Hume S, Phelps J, Long L, Bohorova N, Kim D, Pauly M, Velasco J, Whaley K, Zeitlin L, Garger SJ, White E, Bai Y, Haydon H, Bratcher B. Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:638-54. [PMID: 20514694 DOI: 10.1111/j.1467-7652.2009.00495.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants have been proposed as an attractive alternative for pharmaceutical protein production to current mammalian or microbial cell-based systems. Eukaryotic protein processing coupled with reduced production costs and low risk for mammalian pathogen contamination and other impurities have led many to predict that agricultural systems may offer the next wave for pharmaceutical product production. However, for this to become a reality, the quality of products produced at a relevant scale must equal or exceed the predetermined release criteria of identity, purity, potency and safety as required by pharmaceutical regulatory agencies. In this article, the ability of transient plant virus expression systems to produce a wide range of products at high purity and activity is reviewed. The production of different recombinant proteins is described along with comparisons with established standards, including high purity, specific activity and promising preclinical outcomes. Adaptation of transient plant virus systems to large-scale manufacturing formats required development of virus particle and Agrobacterium inoculation methods. One transient plant system case study illustrates the properties of greenhouse and field-produced recombinant aprotinin compared with an US Food and Drug Administration-approved pharmaceutical product and found them to be highly comparable in all properties evaluated. A second transient plant system case study demonstrates a fully functional monoclonal antibody conforming to release specifications. In conclusion, the production capacity of large quantities of recombinant protein offered by transient plant expression systems, coupled with robust downstream purification approaches, offers a promising solution to recombinant protein production that compares favourably to cell-based systems in scale, cost and quality.
Collapse
|
10
|
Goulet C, Benchabane M, Anguenot R, Brunelle F, Khalf M, Michaud D. A companion protease inhibitor for the protection of cytosol-targeted recombinant proteins in plants. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:142-54. [PMID: 20051033 DOI: 10.1111/j.1467-7652.2009.00470.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We reported earlier the potential of tomato cathepsin D inhibitor (SlCDI) as an in-built stabilizing agent for the protection of recombinant proteins in transgenic plant leaf crude extracts (Plant Biotechnol J.4, 359-368). Here we document the potential of SlCDI for the in situ protection of proteins in potato leaves. Total protein assays with control and SlCDI-expressing potato lines indicated a positive impact of slcdi transgene expression on leaf protein content, with a mean relative increase of 35%-40% depending on the light regime. Out of approximately 700 proteins detected on 2-D gels, only 20 exhibited a significantly altered level on a protein-specific basis, whereas most proteins were up-regulated on a leaf fresh weight basis, albeit at variable rates. Quantitative reverse trancriptase-PCR assays for rubisco activase showed similar transcript levels in leaves of test and control lines despite protein levels increased by two- to threefold in SlCDI-expressing lines. These observations, along with the unrelated biological functions assigned to MS-identified proteins up-regulated in leaves and protease assays showing slightly increased proteasome activity in protein extracts of SlCDI-expressing lines, suggest a general, proteasome-independent protein stabilizing effect of SlCDI in planta. Transient expression assays with human alpha(1)-antichymotrypsin also showed a stabilizing effect for SlCDI on heterologous proteins, leading to net levels of the human protein increased by approximately 2.5-fold in SlCDI-expressing plants. These data illustrate, overall, the potential of SlCDI as an in vivo protein-stabilizing agent in transgenic plant systems, useful to improve protein levels and recombinant protein accumulation.
Collapse
Affiliation(s)
- Charles Goulet
- CRH/INAF, Pavillon des Services (INAF), Université Laval, Québec, QC, Canada
| | | | | | | | | | | |
Collapse
|