1
|
Pagliaro L, Chen SJ, Herranz D, Mecucci C, Harrison CJ, Mullighan CG, Zhang M, Chen Z, Boissel N, Winter SS, Roti G. Acute lymphoblastic leukaemia. Nat Rev Dis Primers 2024; 10:41. [PMID: 38871740 DOI: 10.1038/s41572-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nicolas Boissel
- Hôpital Saint-Louis, APHP, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stuart S Winter
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
2
|
Schwab C, Cranston RE, Ryan SL, Butler E, Winterman E, Hawking Z, Bashton M, Enshaei A, Russell LJ, Kingsbury Z, Peden JF, Barretta E, Murray J, Gibson J, Hinchliffe AC, Bain R, Vora A, Bentley DR, Ross MT, Moorman AV, Harrison CJ. Integrative genomic analysis of childhood acute lymphoblastic leukaemia lacking a genetic biomarker in the UKALL2003 clinical trial. Leukemia 2023; 37:529-538. [PMID: 36550215 PMCID: PMC9991913 DOI: 10.1038/s41375-022-01799-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Incorporating genetics into risk-stratification for treatment of childhood B-progenitor acute lymphoblastic leukaemia (B-ALL) has contributed significantly to improved survival. In about 30% B-ALL (B-other-ALL) without well-established chromosomal changes, new genetic subtypes have recently emerged, yet their true prognostic relevance largely remains unclear. We integrated next generation sequencing (NGS): whole genome sequencing (WGS) (n = 157) and bespoke targeted NGS (t-NGS) (n = 175) (overlap n = 36), with existing genetic annotation in a representative cohort of 351 B-other-ALL patients from the childhood ALL trail, UKALL2003. PAX5alt was most frequently observed (n = 91), whereas PAX5 P80R mutations (n = 11) defined a distinct PAX5 subtype. DUX4-r subtype (n = 80) was defined by DUX4 rearrangements and/or ERG deletions. These patients had a low relapse rate and excellent survival. ETV6::RUNX1-like subtype (n = 21) was characterised by multiple abnormalities of ETV6 and IKZF1, with no reported relapses or deaths, indicating their excellent prognosis in this trial. An inferior outcome for patients with ABL-class fusions (n = 25) was confirmed. Integration of NGS into genomic profiling of B-other-ALL within a single childhood ALL trial, UKALL2003, has shown the added clinical value of NGS-based approaches, through improved accuracy in detection and classification into the range of risk stratifying genetic subtypes, while validating their prognostic significance.
Collapse
Affiliation(s)
- Claire Schwab
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Ruth E Cranston
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Sarra L Ryan
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Ellie Butler
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Emily Winterman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Zoe Hawking
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Matthew Bashton
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Amir Enshaei
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Lisa J Russell
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Zoya Kingsbury
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - John F Peden
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Emilio Barretta
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - James Murray
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Jude Gibson
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Andrew C Hinchliffe
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Robert Bain
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - David R Bentley
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Mark T Ross
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK.
| |
Collapse
|
3
|
Moura SV, Andrade F, Magalhães IQ, Costa I, Silva DB, D'Andrea ML, Pinheiro VP, Lee MLM, Werneck F, Emerenciano M, Pombo-de-Oliveira MS. Clinical and molecular epidemiology of neonatal leukemia in Brazil. Leuk Lymphoma 2015; 56:903-9. [PMID: 24991719 DOI: 10.3109/10428194.2014.938327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The clinical and molecular findings of 77 cases of neonatal leukemia (NL) and 380 of infant leukemia (IL) were selected to distinguish features between NL and IL. Somatic gene mutations associated with acute leukemia including FLT3, RAS and PTPN11 were revisited. There were 42 cases of congenital leukemia associated with Down syndrome (DS) and 39 of these cases presented features of acute myeloid leukemia (AML)-M7. Twenty-seven of the DS cases underwent spontaneous remission and were reclassified as a transient myeloproliferative disorder. GATA1 mutations were found in 70% of these cases. In non-DS, frequent abnormalities were MLL rearrangements, mainly MLL-AFF1 in acute lymphoblastic leukemia and MLL-MLLT3 in AML. The FLT3 mutation was not found, while RAS (n = 4) and PTPN11 (n = 2) mutations were identified and reported for the first time in NL. There was substantial evidence to support that somatic abnormalities occur in utero. Thus, congenital leukemia is a good model for understanding leukemogenesis.
Collapse
Affiliation(s)
- Suellen Valadares Moura
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer , Rio de Janeiro , Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|