1
|
Jiang W, Wang J, Pan H, Yang R, Ma F, Luo J, Han C. Advances in Mechanism and Application of Molecular Breeding of Medicinal Mushrooms: A Review. Int J Med Mushrooms 2023; 25:65-74. [PMID: 37831513 DOI: 10.1615/intjmedmushrooms.2023050122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
With the development of molecular biology and genomics technology, mushroom breeding methods have changed from single traditional breeding to molecular breeding. Compared with traditional breeding methods, molecular breeding has the advantages of short time and high efficiency. It breaks through the restrictive factors of conventional breeding and improves the accuracy of breeding. Molecular breeding technology is gradually applied to mushroom breeding. This paper summarizes the concept of molecular breeding and the application progress of various molecular breeding technologies in mushroom breeding, in order to provide reference for future research on mushroom breeding.
Collapse
Affiliation(s)
- Wenming Jiang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Hongyu Pan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, P.R. China
| | - Rui Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Feifei Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
2
|
Wu J, Zong Y, Tu Z, Yang L, li W, Cui Z, Hao Z, Li H. Genome-wide identification of XTH genes in Liriodendron chinense and functional characterization of LcXTH21. FRONTIERS IN PLANT SCIENCE 2022; 13:1014339. [PMID: 36388518 PMCID: PMC9647132 DOI: 10.3389/fpls.2022.1014339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/11/2022] [Indexed: 06/01/2023]
Abstract
Liriodendron chinense is a relic tree species of the family Magnoliaceae with multiple uses in timber production, landscape decoration, and afforestation. L. chinense often experiences drought stress in arid areas. However, the molecular basis underlying the drought response of L. chinense remains unclear. Many studies have reported that the xyloglucan endotransglucosylase/hydrolase (XTH) family plays an important role in drought stress resistance. Hereby, to explore the drought resistance mechanism of L. chinense, we identify XTH genes on a genome-wide scale in L. chinense. A total of 27 XTH genes were identified in L. chinense, and these genes were classified into three subfamilies. Drought treatment and RT-qPCR analysis revealed that six LcXTH genes significantly responded to drought stress, especially LcXTH21. Hence, we cloned the LcXTH21 gene and overexpressed it in tobacco via gene transfer to analyze its function. The roots of transgenic plants were more developed than those of wild-type plants under different polyethylene glycol (PEG) concentration, and further RT-qPCR analysis showed that LcXTH21 highly expressed in root compared to aboveground organs, indicating that LcXTH21 may play a role in drought resistance through promoting root development. The results of this study provide new insights into the roles of LcXTH genes in the drought stress response. Our findings will also aid future studies of the molecular mechanisms by which LcXTH genes contribute to the drought response.
Collapse
|
3
|
Lee S, Park G, Choi Y, Park S, Kim H, Lee O, Kim T, Park Y. Whole-Genome Resequencing of Near-Isogenic Lines Reveals a Genomic Region Associated with High Trans-Lycopene Contents in Watermelon. PLANTS (BASEL, SWITZERLAND) 2021; 11:8. [PMID: 35009012 PMCID: PMC8747524 DOI: 10.3390/plants11010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Trans-lycopene is a functional phytochemical abundant in red-fleshed watermelons, and its contents vary among cultivars. In this study, the genetic basis of high trans-lycopene contents in scarlet red flesh was evaluated. Three near-isogenic lines (NILs) with high trans-lycopene contents were derived from the scarlet red-fleshed donor parent DRD and three coral red-fleshed (low trans-lycopene contents) recurrent parents. The lycopene contents of DRD (589.4 ± 71.8 µg/g) were two times higher than that of the recurrent parents, and values for NILs were intermediate between those of the parents. Coral red-fleshed lines and F1 cultivars showed low trans-lycopene contents (135.7 ± 18.0 µg/g to 213.7 ± 39.5 µg/g). Whole-genome resequencing of two NILs and their parents and an analysis of genome-wide single-nucleotide polymorphisms revealed three common introgressed regions (CIRs) on chromosomes 6, 9, and 10. Twenty-eight gene-based cleaved amplified polymorphic sequence (CAPS) markers were developed from the CIRs. The CAPS markers derived from CIR6 on chromosome 6, spanning approximately 1 Mb, were associated (R2 = 0.45-0.72) with the trans-lycopene contents, particularly CIR6-M1 and CIR6-M4. Our results imply that CIR6 is a major genomic region associated with variation in the trans-lycopene contents in red-fleshed watermelon, and CIR6-M1 and CIR6-M4 may be useful for marker-assisted selection.
Collapse
Affiliation(s)
- Siyoung Lee
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Korea; (S.L.); (G.P.); (Y.C.); (S.P.)
| | - Girim Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Korea; (S.L.); (G.P.); (Y.C.); (S.P.)
| | - Yunseo Choi
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Korea; (S.L.); (G.P.); (Y.C.); (S.P.)
| | - Seoyeon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Korea; (S.L.); (G.P.); (Y.C.); (S.P.)
| | - Hoytaek Kim
- Department of Horticulture, Sunchon National University, Sunchon 57922, Korea;
| | - Oakjin Lee
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea; (O.L.); (T.K.)
| | - Taebok Kim
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Korea; (O.L.); (T.K.)
| | - Younghoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Korea; (S.L.); (G.P.); (Y.C.); (S.P.)
| |
Collapse
|
4
|
|
5
|
Li L, Yang X, Cui S, Meng X, Mu G, Hou M, He M, Zhang H, Liu L, Chen CY. Construction of High-Density Genetic Map and Mapping Quantitative Trait Loci for Growth Habit-Related Traits of Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2019; 10:745. [PMID: 31263472 PMCID: PMC6584813 DOI: 10.3389/fpls.2019.00745] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/20/2019] [Indexed: 05/03/2023]
Abstract
Plant growth habit is an important and complex agronomic trait and is associated with yield, disease resistance, and mechanized harvesting in peanuts. There are at least two distinct growth habits (erect and prostrate) and several intermediate forms existing in the peanut germplasm. A recombinant inbred line population containing 188 individuals was developed from a cross of "Jihua 5" and "M130" for genetically dissecting the architecture of the growth habit. A new high-density genetic linkage map was constructed by using specific locus amplified fragment sequencing technology. The map contains 2,808 single-nucleotide polymorphism markers distributed on 20 linkage groups with a total length of 1,308.20 cM and an average inter-marker distance of 0.47 cM. The quantitative trait locus (QTL) analysis of the growth habit-related traits was conducted based on phenotyping data from seven environments. A total of 39 QTLs for growth habit-related traits was detected on 10 chromosomes explaining 4.55-27.74% of the phenotypic variance, in which 6 QTLs were for lateral branch angle, 8 QTLs were for extent radius, 7 QTLs were for the index of plant type, 11 QTLs were for main stem height, and 7 QTLs were for lateral branch length. Among these QTLs, 12 were co-localized on chromosome B05 spanning an approximately 0.17 Mb physical interval in comparison with the allotetraploid reference genome of "Tifrunner." Analysis of the co-localized genome region has shown that the putative genes are involved in light and hormones and will facilitate peanut growth habit molecular breeding and study of peanut domestication.
Collapse
Affiliation(s)
- Li Li
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Xinlei Yang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Shunli Cui
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinhao Meng
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Guojun Mu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Mingyu Hou
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Meijing He
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Hui Zhang
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Lifeng Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
- *Correspondence: Lifeng Liu,
| | - Charles Y. Chen
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
- Charles Y. Chen,
| |
Collapse
|
6
|
Ayalew H, Liu H, Börner A, Kobiljski B, Liu C, Yan G. Genome-Wide Association Mapping of Major Root Length QTLs Under PEG Induced Water Stress in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1759. [PMID: 30555498 PMCID: PMC6281995 DOI: 10.3389/fpls.2018.01759] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/12/2018] [Indexed: 05/18/2023]
Abstract
Roots are vital plant organs that determine adaptation to various soil conditions. The present study evaluated a core winter wheat collection for rooting depth under PEG induced early stage water stress and non-stress growing conditions. Analysis of phenotypic data indicated highly significant (p < 0.01) variation among genotypes. Broad sense heritability of 59 and 73% with corresponding genetic gains of 7.6 and 9.7 (5% selection intensity) were found under non-stress and stress conditions, respectively. The test genotypes were grouped in to three distinct clusters using unweighted pair group method with arithmetic mean (UPGMA) clustering based on maximum Euclidian distance. The first three principal components gave optimum mixed linear model for genome wide association study (GWAS). Linkage disequilibrium (LD) analysis showed significant LD (p < 0.05) amongst 15% of total marker pairs (25,125). Nearly 16% of the significant LDs were among inter chromosomal marker pairs. GWAS revealed five significant root length QTLs spread across four chromosomes. None of the identified QTLs were common between the two growing conditions. Stress specific QTLs, combined explaining 31% of phenotypic variation were located on chromosomes 2B (wPt6278) and 3B (wPt1159). Similarly, two of the three QTLs (wPt0021 and wPt8890) identified under the non-stress condition were found on chromosomes 3B and 5B, respectively. The B genome showed significant importance in controlling root growth both under stress and non-stress conditions. The identified markers can potentially be validated and used for marker assisted selection.
Collapse
Affiliation(s)
- Habtamu Ayalew
- School of Agriculture and Environment, Faculty of Science, The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Hui Liu
- School of Agriculture and Environment, Faculty of Science, The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | - Chunji Liu
- CSIRO Agriculture Flagship, Townsville, QLD, Australia
| | - Guijun Yan
- School of Agriculture and Environment, Faculty of Science, The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- *Correspondence: Guijun Yan,
| |
Collapse
|
7
|
Ismail NA, Rafii MY, Mahmud TMM, Hanafi MM, Miah G. Molecular markers: a potential resource for ginger genetic diversity studies. Mol Biol Rep 2016; 43:1347-1358. [PMID: 27585572 DOI: 10.1007/s11033-016-4070-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.
Collapse
Affiliation(s)
- Nor Asiah Ismail
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Malaysia Agricultural Research and Development Institute, Serdang, Selangor, Malaysia
| | - M Y Rafii
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - T M M Mahmud
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - M M Hanafi
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Land Management, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Gous Miah
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Varshney RK, Singh VK, Hickey JM, Xun X, Marshall DF, Wang J, Edwards D, Ribaut JM. Analytical and Decision Support Tools for Genomics-Assisted Breeding. TRENDS IN PLANT SCIENCE 2016; 21:354-363. [PMID: 26651919 DOI: 10.1016/j.tplants.2015.10.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/01/2015] [Accepted: 10/23/2015] [Indexed: 05/18/2023]
Abstract
To successfully implement genomics-assisted breeding (GAB) in crop improvement programs, efficient and effective analytical and decision support tools (ADSTs) are 'must haves' to evaluate and select plants for developing next-generation crops. Here we review the applications and deployment of appropriate ADSTs for GAB, in the context of next-generation sequencing (NGS), an emerging source of massive genomic information. We discuss suitable software tools and pipelines for marker-based approaches (markers/haplotypes), including large-scale genotypic and phenotypic, data management, and molecular breeding approaches. Although phenotyping remains expensive and time consuming, prediction of allelic effects on phenotypes opens new doors to enhance genetic gain across crop cycles, building on reliable phenotyping approaches and good crop information systems, including pedigree information and target haplotypes.
Collapse
Affiliation(s)
- Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India; School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, Australia.
| | - Vikas K Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - John M Hickey
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, UK
| | - Xu Xun
- Beijing Genomics Institute (BGI) Shenzhen, Shenzhen, China
| | - David F Marshall
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Jun Wang
- Beijing Genomics Institute (BGI) Shenzhen, Shenzhen, China
| | - David Edwards
- School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, Australia
| | - Jean-Marcel Ribaut
- Generation Challenge Program/Integrated Breeding Platform, c/o CIMMYT, Apdo. Postal 6-641, DF Mexico, Mexico
| |
Collapse
|
9
|
Kang YJ, Lee T, Lee J, Shim S, Jeong H, Satyawan D, Kim MY, Lee SH. Translational genomics for plant breeding with the genome sequence explosion. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1057-69. [PMID: 26269219 PMCID: PMC5042036 DOI: 10.1111/pbi.12449] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/04/2015] [Accepted: 07/10/2015] [Indexed: 05/22/2023]
Abstract
The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies.
Collapse
Affiliation(s)
- Yang Jae Kang
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Taeyoung Lee
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jayern Lee
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Sangrea Shim
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Haneul Jeong
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Dani Satyawan
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Indonesian Center for Agricultural Biotechnology and Genomic resources Research and Development (ICABIOGRAD-IAARD), Bogor, Indonesia
| | - Moon Young Kim
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Suk-Ha Lee
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
10
|
Gujaria-Verma N, Vail SL, Carrasquilla-Garcia N, Penmetsa RV, Cook DR, Farmer AD, Vandenberg A, Bett KE. Genetic mapping of legume orthologs reveals high conservation of synteny between lentil species and the sequenced genomes of Medicago and chickpea. FRONTIERS IN PLANT SCIENCE 2014; 5:676. [PMID: 25538716 PMCID: PMC4256995 DOI: 10.3389/fpls.2014.00676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/13/2014] [Indexed: 05/23/2023]
Abstract
Lentil (Lens culinaris Medik.) is a global food crop with increasing importance for food security in south Asia and other regions. Lens ervoides, a wild relative of cultivated lentil, is an important source of agronomic trait variation. Lens is a member of the galegoid clade of the Papilionoideae family, which includes other important dietary legumes such as chickpea (Cicer arietinum) and pea (Pisum sativum), and the sequenced model legume Medicago truncatula. Understanding the genetic structure of Lens spp. in relation to more fully sequenced legumes would allow leveraging of genomic resources. A set of 1107 TOG-based amplicons were identified in L. ervoides and a subset thereof used to design SNP markers for mapping. A map of L. ervoides consisting of 377 SNP markers spread across seven linkage groups was developed using a GoldenGate genotyping array and single SNP marker assays. Comparison with maps of M. truncatula and L. culinaris documented considerable shared synteny and led to the identification of a few major translocations and a major inversion that distinguish Lens from M. truncatula, as well as a translocation that distinguishes L. culinaris from L. ervoides. The identification of chromosome-level differences among Lens spp. will aid in the understanding of introgression of genes from L. ervoides into cultivated L. culinaris, furthering genetic research and breeding applications in lentil.
Collapse
Affiliation(s)
- Neha Gujaria-Verma
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| | - Sally L. Vail
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | | | - R. Varma Penmetsa
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | - Douglas R. Cook
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | - Andrew D. Farmer
- Bioinformatics, National Centre for Genomic ResourcesSanta Fe, NM, USA
| | - Albert Vandenberg
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| | - Kirstin E. Bett
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| |
Collapse
|
11
|
Bohra A, Pandey MK, Jha UC, Singh B, Singh IP, Datta D, Chaturvedi SK, Nadarajan N, Varshney RK. Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1263-91. [PMID: 24710822 PMCID: PMC4035543 DOI: 10.1007/s00122-014-2301-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/17/2014] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE Given recent advances in pulse molecular biology, genomics-driven breeding has emerged as a promising approach to address the issues of limited genetic gain and low productivity in various pulse crops. The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability.
Collapse
Affiliation(s)
- Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324 India
| | - Uday C. Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Balwant Singh
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi, 110012 India
| | - Indra P. Singh
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Dibendu Datta
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | | | - N. Nadarajan
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324 India
- The University of Western Australia (UWA), Crawley, 6009 Australia
| |
Collapse
|
12
|
Kaur S, Kimber RBE, Cogan NOI, Materne M, Forster JW, Paull JG. SNP discovery and high-density genetic mapping in faba bean (Vicia faba L.) permits identification of QTLs for ascochyta blight resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:47-55. [PMID: 24467895 DOI: 10.1016/j.plantsci.2013.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 05/11/2023]
Abstract
Ascochyta blight, caused by the fungus Ascochyta fabae Speg., is a common and destructive disease of faba bean (Vicia faba L.) on a global basis. Yield losses vary from typical values of 35-40% to 90% under specific environmental conditions. Several sources of resistance have been identified and used in breeding programs. However, introgression of the resistance gene determinants into commercial cultivars as a gene pyramiding approach is reliant on selection of closely linked genetic markers. A total of 14,552 base variants were identified from a faba bean expressed sequence tag (EST) database, and were further quality assessed to obtain a set of 822 high-quality single nucleotide polymorphisms (SNPs). Sub-sets of 336 EST-derived simple sequence repeats (SSRs) and 768 SNPs were further used for high-density genetic mapping of a biparental faba bean mapping population (Icarus×Ascot) that segregates for resistance to ascochyta blight. The linkage map spanned a total length of 1216.8 cM with 12 linkage groups (LGs) and an average marker interval distance of 2.3 cM. Comparison of map structure to the genomes of closely related legume species revealed a high degree of conserved macrosynteny, as well as some rearrangements. Based on glasshouse evaluation of ascochyta blight resistance performed over two years, four genomic regions controlling resistance were identified on Chr-II, Chr-VI and two regions on Chr-I.A. Of these, one (QTL-3) may be identical with quantitative trait loci (QTLs) identified in prior studies, while the others (QTL-1, QTL-2 and QTL-4) may be novel. Markers in close linkage to ascochyta blight resistance genes identified in this study can be further validated and effectively implemented in faba bean breeding programs.
Collapse
Affiliation(s)
- Sukhjiwan Kaur
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
| | - Rohan B E Kimber
- South Australian Research and Development Institute, GPO Box 397, Adelaide, South Australia 5001, Australia
| | - Noel O I Cogan
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
| | - Michael Materne
- Department of Environment and Primary Industries, Biosciences Research Division, Grains Innovation Park, PMB 260, Horsham, Victoria 3401, Australia
| | - John W Forster
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia; La Trobe University, Bundoora, Victoria 3086, Australia.
| | - Jeffrey G Paull
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
13
|
Varshney RK, Kudapa H, Roorkiwal M, Thudi M, Pandey MK, Saxena RK, Chamarthi SK, Mohan SM, Mallikarjuna N, Upadhyaya H, Gaur PM, Krishnamurthy L, Saxena KB, Nigam SN, Pande S. Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies. J Biosci 2013; 37:811-20. [PMID: 23107917 DOI: 10.1007/s12038-012-9228-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular markers are the most powerful genomic tools to increase the efficiency and precision of breeding practices for crop improvement. Progress in the development of genomic resources in the leading legume crops of the semi-arid tropics (SAT), namely, chickpea (Cicer arietinum), pigeonpea (Cajanus cajan) and groundnut (Arachis hypogaea), as compared to other crop species like cereals, has been very slow. With the advances in next-generation sequencing (NGS) and high-throughput (HTP) genotyping methods, there is a shift in development of genomic resources including molecular markers in these crops. For instance, 2,000 to 3,000 novel simple sequence repeats (SSR) markers have been developed each for chickpea, pigeonpea and groundnut. Based on Sanger, 454/FLX and Illumina transcript reads, transcriptome assemblies have been developed for chickpea (44,845 transcript assembly contigs, or TACs) and pigeonpea (21,434 TACs). Illumina sequencing of some parental genotypes of mapping populations has resulted in the development of 120 million reads for chickpea and 128.9 million reads for pigeonpea. Alignment of these Illumina reads with respective transcriptome assemblies have provided more than 10,000 SNPs each in chickpea and pigeonpea. A variety of SNP genotyping platforms including GoldenGate, VeraCode and Competitive Allele Specific PCR (KASPar) assays have been developed in chickpea and pigeonpea. By using above resources, the first-generation or comprehensive genetic maps have been developed in the three legume speciesmentioned above. Analysis of phenotyping data together with genotyping data has provided candidate markers for drought-tolerance-related root traits in chickpea, resistance to foliar diseases in groundnut and sterility mosaic disease (SMD) and fertility restoration in pigeonpea. Together with these traitassociated markers along with those already available, molecular breeding programmes have been initiated for enhancing drought tolerance, resistance to fusarium wilt and ascochyta blight in chickpea and resistance to foliar diseases in groundnut. These trait-associated robust markers along with other genomic resources including genetic maps and genomic resources will certainly accelerate crop improvement programmes in the SAT legumes.
Collapse
Affiliation(s)
- Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, India.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ, Michelmore R, Varshney RK. Advances in Arachis genomics for peanut improvement. Biotechnol Adv 2011; 30:639-51. [PMID: 22094114 DOI: 10.1016/j.biotechadv.2011.11.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/24/2011] [Accepted: 11/01/2011] [Indexed: 01/01/2023]
Abstract
Peanut genomics is very challenging due to its inherent problem of genetic architecture. Blockage of gene flow from diploid wild relatives to the tetraploid; cultivated peanut, recent polyploidization combined with self pollination, and the narrow genetic base of the primary genepool have resulted in low genetic diversity that has remained a major bottleneck for genetic improvement of peanut. Harnessing the rich source of wild relatives has been negligible due to differences in ploidy level as well as genetic drag and undesirable alleles for low yield. Lack of appropriate genomic resources has severely hampered molecular breeding activities, and this crop remains among the less-studied crops. The last five years, however, have witnessed accelerated development of genomic resources such as development of molecular markers, genetic and physical maps, generation of expressed sequenced tags (ESTs), development of mutant resources, and functional genomics platforms that facilitate the identification of QTLs and discovery of genes associated with tolerance/resistance to abiotic and biotic stresses and agronomic traits. Molecular breeding has been initiated for several traits for development of superior genotypes. The genome or at least gene space sequence is expected to be available in near future and this will further accelerate use of biotechnological approaches for peanut improvement.
Collapse
Affiliation(s)
- Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gujaria N, Kumar A, Dauthal P, Dubey A, Hiremath P, Bhanu Prakash A, Farmer A, Bhide M, Shah T, Gaur PM, Upadhyaya HD, Bhatia S, Cook DR, May GD, Varshney RK. Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1577-89. [PMID: 21384113 PMCID: PMC3082040 DOI: 10.1007/s00122-011-1556-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/12/2011] [Indexed: 05/18/2023]
Abstract
A transcript map has been constructed by the development and integration of genic molecular markers (GMMs) including single nucleotide polymorphism (SNP), genic microsatellite or simple sequence repeat (SSR) and intron spanning region (ISR)-based markers, on an inter-specific mapping population of chickpea, the third food legume crop of the world and the first food legume crop of India. For SNP discovery through allele re-sequencing, primer pairs were designed for 688 genes/expressed sequence tags (ESTs) of chickpea and 657 genes/ESTs of closely related species of chickpea. High-quality sequence data obtained for 220 candidate genic regions on 2-20 genotypes representing 9 Cicer species provided 1,893 SNPs with an average frequency of 1/35.83 bp and 0.34 PIC (polymorphism information content) value. On an average 2.9 haplotypes were present in 220 candidate genic regions with an average haplotype diversity of 0.6326. SNP2CAPS analysis of 220 sequence alignments, as mentioned above, provided a total of 192 CAPS candidates. Experimental analysis of these 192 CAPS candidates together with 87 CAPS candidates identified earlier through in silico mining of ESTs provided scorable amplification in 173 (62.01%) cases of which predicted assays were validated in 143 (82.66%) cases (CGMM). Alignments of chickpea unigenes with Medicago truncatula genome were used to develop 121 intron spanning region (CISR) markers of which 87 yielded scorable products. In addition, optimization of 77 EST-derived SSR (ICCeM) markers provided 51 scorable markers. Screening of easily assayable 281 markers including 143 CGMMs, 87 CISRs and 51 ICCeMs on 5 parental genotypes of three mapping populations identified 104 polymorphic markers including 90 markers on the inter-specific mapping population. Sixty-two of these GMMs together with 218 earlier published markers (including 64 GMM loci) and 20 other unpublished markers could be integrated into this genetic map. A genetic map developed here, therefore, has a total of 300 loci including 126 GMM loci and spans 766.56 cM, with an average inter-marker distance of 2.55 cM. In summary, this is the first report on the development of large-scale genic markers including development of easily assayable markers and a transcript map of chickpea. These resources should be useful not only for genome analysis and genetics and breeding applications of chickpea, but also for comparative legume genomics.
Collapse
Affiliation(s)
- Neha Gujaria
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
- Dr. Hari Singh Gaur University, Sagar, 470003 Madhya Pradesh India
| | - Ashish Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Preeti Dauthal
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Anuja Dubey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Pavana Hiremath
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - A. Bhanu Prakash
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Andrew Farmer
- National Centre for Genome Resources (NCGR), Santa Fe, NM 87505 USA
| | - Mangla Bhide
- Dr. Hari Singh Gaur University, Sagar, 470003 Madhya Pradesh India
| | - Trushar Shah
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Pooran M. Gaur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Sabhyata Bhatia
- National Institute for Plant Genome Research (NIPGR), New Delhi, 110067 India
| | - Douglas R. Cook
- University of California, Davis (UC-Davis), Davis, CA 95616 USA
| | - Greg D. May
- National Centre for Genome Resources (NCGR), Santa Fe, NM 87505 USA
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
- CGIAR Generation Challenge Programme (GCP), c/o CIMMYT, 06600 Mexico, DF Mexico
| |
Collapse
|
16
|
Hurwitz BL, Kudrna D, Yu Y, Sebastian A, Zuccolo A, Jackson SA, Ware D, Wing RA, Stein L. Rice structural variation: a comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:990-1003. [PMID: 20626650 DOI: 10.1111/j.1365-313x.2010.04293.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rapid progress in comparative genomics among the grasses has revealed similar gene content and order despite exceptional differences in chromosome size and number. Large- and small-scale genomic variations are of particular interest, especially among cultivated and wild species, as they encode rapidly evolving features that may be important in adaptation to particular environments. We present a genome-wide study of intermediate-sized structural variation (SV) among rice (Oryza sativa) and three of its closest relatives in the genus Oryza (Oryza nivara, Oryza rufipogon and Oryza glaberrima). We computationally identified regional expansions, contractions and inversions in the Oryza species genomes relative to O. sativa by combining data from paired-end clone alignments to the O. sativa reference genome and physical maps. A subset of the computational predictions was validated using a new approach for BAC size determination. The result was a confirmed catalog of 674 expansions (25-38 Mb) and 611 (4-19 Mb) contractions, and 140 putative inversions (14-19 Mb) between the three Oryza species and O. sativa. In the expanded regions unique to O. sativa we found enrichment in transposable elements (TEs): long terminal repeats (LTRs) were randomly located across the chromosomes, and their insertion times corresponded to the date of the A genome radiation. Also, rice-expanded regions contained an over-representation of single-copy genes related to defense factors in the environment. This catalog of confirmed SV in reference to O. sativa provides an entry point for future research in genome evolution, speciation, domestication and novel gene discovery.
Collapse
Affiliation(s)
- Bonnie L Hurwitz
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nayak SN, Zhu H, Varghese N, Datta S, Choi HK, Horres R, Jüngling R, Singh J, Kavi Kishor PB, Sivaramakrishnan S, Hoisington DA, Kahl G, Winter P, Cook DR, Varshney RK. Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1415-41. [PMID: 20098978 PMCID: PMC2854349 DOI: 10.1007/s00122-010-1265-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/27/2009] [Indexed: 05/18/2023]
Abstract
This study presents the development and mapping of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers in chickpea. The mapping population is based on an inter-specific cross between domesticated and non-domesticated genotypes of chickpea (Cicer arietinum ICC 4958 x C. reticulatum PI 489777). This same population has been the focus of previous studies, permitting integration of new and legacy genetic markers into a single genetic map. We report a set of 311 novel SSR markers (designated ICCM-ICRISAT chickpea microsatellite), obtained from an SSR-enriched genomic library of ICC 4958. Screening of these SSR markers on a diverse panel of 48 chickpea accessions provided 147 polymorphic markers with 2-21 alleles and polymorphic information content value 0.04-0.92. Fifty-two of these markers were polymorphic between parental genotypes of the inter-specific population. We also analyzed 233 previously published (H-series) SSR markers that provided another set of 52 polymorphic markers. An additional 71 gene-based SNP markers were developed from transcript sequences that are highly conserved between chickpea and its near relative Medicago truncatula. By using these three approaches, 175 new marker loci along with 407 previously reported marker loci were integrated to yield an improved genetic map of chickpea. The integrated map contains 521 loci organized into eight linkage groups that span 2,602 cM, with an average inter-marker distance of 4.99 cM. Gene-based markers provide anchor points for comparing the genomes of Medicago and chickpea, and reveal extended synteny between these two species. The combined set of genetic markers and their integration into an improved genetic map should facilitate chickpea genetics and breeding, as well as translational studies between chickpea and Medicago.
Collapse
Affiliation(s)
- Spurthi N. Nayak
- Centre of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
- Department of Genetics, Osmania University, Hyderabad, 500007 Andhra Pradesh India
| | - Hongyan Zhu
- Department of Plant Pathology, University of California, Davis, CA 95616 USA
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546 USA
| | - Nicy Varghese
- Centre of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Subhojit Datta
- Department of Plant Pathology, University of California, Davis, CA 95616 USA
- Indian Institute of Pulses Research, Kanpur, 208024 Uttar Pradesh India
| | - Hong-Kyu Choi
- Department of Plant Pathology, University of California, Davis, CA 95616 USA
- Department of Genetic Engineering, Dong-A University, Busan, 604-714 South Korea
| | - Ralf Horres
- University of Frankfurt, Max von Laue Str. 9, 60439 Frankfurt am Main, Germany
| | - Ruth Jüngling
- University of Frankfurt, Max von Laue Str. 9, 60439 Frankfurt am Main, Germany
| | - Jagbir Singh
- Centre of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
- Department of Agricultural Biotechnology, Acharya N.G. Ranga Agricultural University (ANGRAU), Hyderabad, 500030 Andhra Pradesh India
| | - P. B. Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad, 500007 Andhra Pradesh India
| | - S. Sivaramakrishnan
- Department of Agricultural Biotechnology, Acharya N.G. Ranga Agricultural University (ANGRAU), Hyderabad, 500030 Andhra Pradesh India
| | - Dave A. Hoisington
- Centre of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Günter Kahl
- University of Frankfurt, Max von Laue Str. 9, 60439 Frankfurt am Main, Germany
- GenXPro GmbH, Frankfurter Innovationszentrum Biotechnologie (FIZ), Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| | - Peter Winter
- GenXPro GmbH, Frankfurter Innovationszentrum Biotechnologie (FIZ), Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| | - Douglas R. Cook
- Department of Plant Pathology, University of California, Davis, CA 95616 USA
| | - Rajeev K. Varshney
- Centre of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
- Genomics Towards Gene Discovery Subprogramme, Generation Challenge Programme (GCP), CIMMYT, Int APDO Postal 6-641, 06600 Mexico DF, Mexico
| |
Collapse
|
18
|
St Clair DA. Quantitative disease resistance and quantitative resistance Loci in breeding. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:247-68. [PMID: 19400646 DOI: 10.1146/annurev-phyto-080508-081904] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Quantitative disease resistance (QDR) has been observed within many crop plants but is not as well understood as qualitative (monogenic) disease resistance and has not been used as extensively in breeding. Mapping quantitative trait loci (QTLs) is a powerful tool for genetic dissection of QDR. DNA markers tightly linked to quantitative resistance loci (QRLs) controlling QDR can be used for marker-assisted selection (MAS) to incorporate these valuable traits. QDR confers a reduction, rather than lack, of disease and has diverse biological and molecular bases as revealed by cloning of QRLs and identification of the candidate gene(s) underlying QRLs. Increasing our biological knowledge of QDR and QRLs will enhance understanding of how QDR differs from qualitative resistance and provide the necessary information to better deploy these resources in breeding. Application of MAS for QRLs in breeding for QDR to diverse pathogens is illustrated by examples from wheat, barley, common bean, tomato, and pepper. Strategies for optimum deployment of QRLs require research to understand effects of QDR on pathogen populations over time.
Collapse
Affiliation(s)
- Dina A St Clair
- Plant Sciences Department, University of California, Davis, California 95616, USA.
| |
Collapse
|