1
|
Chiodi E, Marn AM, Geib MT, Ünlü MS. The Role of Surface Chemistry in the Efficacy of Protein and DNA Microarrays for Label-Free Detection: An Overview. Polymers (Basel) 2021; 13:1026. [PMID: 33810267 PMCID: PMC8036480 DOI: 10.3390/polym13071026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/04/2023] Open
Abstract
The importance of microarrays in diagnostics and medicine has drastically increased in the last few years. Nevertheless, the efficiency of a microarray-based assay intrinsically depends on the density and functionality of the biorecognition elements immobilized onto each sensor spot. Recently, researchers have put effort into developing new functionalization strategies and technologies which provide efficient immobilization and stability of any sort of molecule. Here, we present an overview of the most widely used methods of surface functionalization of microarray substrates, as well as the most recent advances in the field, and compare their performance in terms of optimal immobilization of the bioreceptor molecules. We focus on label-free microarrays and, in particular, we aim to describe the impact of surface chemistry on two types of microarray-based sensors: microarrays for single particle imaging and for label-free measurements of binding kinetics. Both protein and DNA microarrays are taken into consideration, and the effect of different polymeric coatings on the molecules' functionalities is critically analyzed.
Collapse
Affiliation(s)
- Elisa Chiodi
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.T.G.); (M.S.Ü.)
| | - Allison M. Marn
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.T.G.); (M.S.Ü.)
| | - Matthew T. Geib
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.T.G.); (M.S.Ü.)
| | - M. Selim Ünlü
- Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (A.M.M.); (M.T.G.); (M.S.Ü.)
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
2
|
Díez P, González-González M, Lourido L, Dégano RM, Ibarrola N, Casado-Vela J, LaBaer J, Fuentes M. NAPPA as a Real New Method for Protein Microarray Generation. MICROARRAYS 2015; 4:214-27. [PMID: 27600221 PMCID: PMC4996395 DOI: 10.3390/microarrays4020214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/30/2015] [Accepted: 04/14/2015] [Indexed: 11/16/2022]
Abstract
Nucleic Acid Programmable Protein Arrays (NAPPA) have emerged as a powerful and innovative technology for the screening of biomarkers and the study of protein-protein interactions, among others possible applications. The principal advantages are the high specificity and sensitivity that this platform offers. Moreover, compared to conventional protein microarrays, NAPPA technology avoids the necessity of protein purification, which is expensive and time-consuming, by substituting expression in situ with an in vitro transcription/translation kit. In summary, NAPPA arrays have been broadly employed in different studies improving knowledge about diseases and responses to treatments. Here, we review the principal advances and applications performed using this platform during the last years.
Collapse
Affiliation(s)
- Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| | - María González-González
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| | - Lucía Lourido
- Rheumatology Division, ProteoRed/ISCIII Proteomics Group, INIBIC, Hospital Universitario de A Coruña, A Coruña 15006, Spain.
| | - Rosa M Dégano
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| | - Nieves Ibarrola
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| | - Juan Casado-Vela
- Biotechnology National Centre, Spanish National Research Council (CSIC), Madrid 28049, Spain.
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287, USA.
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| |
Collapse
|
3
|
Kilb N, Burger J, Roth G. Protein microarray generation by in situ protein expression from template DNA. Eng Life Sci 2014. [DOI: 10.1002/elsc.201300052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Normann Kilb
- Laboratory for Microarray Copying, Centre for Biological Systems Analysis (ZBSA) University of Freiburg Freiburg Germany
| | - Jürgen Burger
- Laboratory for Microarray Copying, Centre for Biological Systems Analysis (ZBSA) University of Freiburg Freiburg Germany
- Laboratory for MEMS Applications, Department of Microsystems Engineering—IMTEK University of Freiburg Freiburg Germany
| | - Günter Roth
- Laboratory for Microarray Copying, Centre for Biological Systems Analysis (ZBSA) University of Freiburg Freiburg Germany
- BIOSS—Centre for Biological Signalling Studies University of Freiburg Freiburg Germany
| |
Collapse
|