1
|
Harmsen MM, Ackerschott B, de Smit H. Serum immunoglobulin or albumin binding single-domain antibodies that enable tailored half-life extension of biologics in multiple animal species. Front Immunol 2024; 15:1346328. [PMID: 38352869 PMCID: PMC10862077 DOI: 10.3389/fimmu.2024.1346328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Single-domain antibody fragments (sdAbs) can be isolated from heavy-chain-only antibodies that occur in camelids or the heavy chain of conventional antibodies, that also occur in camelids. Therapeutic application of sdAbs is often complicated by their low serum half-life. Fusion to sdAb that bind to long-lived serum proteins albumin or IgG can prolong serum half-life of fusion partners. Such studies mostly focused on human application. For half-life prolongation in multiple animal species novel species cross-reacting sdAb are needed. We here describe the isolation from immunized llamas of sdAbs G6 and G13 that bound IgG of 9-10 species analysed, including horse, dog, cat, and swine, as well as sdAb A12 that bound horse, dog, swine and cat albumin. A12 bound albumin with 13 to 271 nM affinity dependent on the species. G13 affinity was difficult to determine by biolayer interferometry due to low and heterogeneous signals. G13 and G6 compete for the same binding domain on Fab fragments. Furthermore, they both lack the hallmark residues typical of camelid sdAbs derived from heavy-chain antibodies and had sequence characteristics typical of human sdAbs with high solubility and stability. This suggests they are derived from conventional llama antibodies. They most likely bind IgG through pairing with VL domains at the VH-VL interface rather than a paratope involving complementarity determining regions. None of the isolated sdAb interfered with FcRn binding to albumin or IgG, and thus do not prevent endosomal albumin/IgG-sdAb complex recycling. Fusions of albumin-binding sdAb A12 to several tetanus neurotoxin (TeNT) binding sdAbs prolonged the terminal serum half-life in piglets to about 4 days, comparable to authentic swine albumin. However, G13 conferred a much lower half-life of 0.84 days. Similarly, in horse, G13 prolonged half-life to only 1.2 days whereas A12 fused to two TeNT binding domains (T6T16A12) had a half-life of 21 days. The high half-life of T6T16A12, which earlier proved to be a highly potent TeNT antitoxin, further supports its therapeutic value. Furthermore, we have identified several additional sdAbs that enable tailored half-life extension of biologicals in multiple animal species.
Collapse
Affiliation(s)
- Michiel M. Harmsen
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Netherlands
| | | | - Hans de Smit
- Research and Development, Smivet B.V., Wijchen, Netherlands
| |
Collapse
|
2
|
Sheff J, Kelly J, Foss M, Brunette E, Kemmerich K, van Faassen H, Raphael S, Hussack G, Comamala G, Rand K, Stanimirovic DB. Epitope mapping of a blood-brain barrier crossing antibody targeting the cysteine-rich region of IGF1R using hydrogen-exchange mass spectrometry enabled by electrochemical reduction. J Biochem 2023; 173:95-105. [PMID: 36346120 DOI: 10.1093/jb/mvac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022] Open
Abstract
Pathologies of the central nervous system impact a significant portion of our population, and the delivery of therapeutics for effective treatment is challenging. The insulin-like growth factor-1 receptor (IGF1R) has emerged as a target for receptor-mediated transcytosis, a process by which antibodies are shuttled across the blood-brain barrier (BBB). Here, we describe the biophysical characterization of VHH-IR4, a BBB-crossing single-domain antibody (sdAb). Binding was confirmed by isothermal titration calorimetry and an epitope was highlighted by surface plasmon resonance that does not overlap with the IGF-1 binding site or other known BBB-crossing sdAbs. The epitope was mapped with a combination of linear peptide scanning and hydrogen-deuterium exchange mass spectrometry (HDX-MS). IGF1R is large and heavily disulphide bonded, and comprehensive HDX analysis was achieved only through the use of online electrochemical reduction coupled with a multiprotease approach, which identified an epitope for VHH-IR4 within the cysteine-rich region (CRR) of IGF1R spanning residues W244-G265. This is the first report of an sdAb binding the CRR. We show that VHH-IR4 inhibits ligand induced auto-phosphorylation of IGF1R and that this effect is mediated by downstream conformational effects. Our results will guide the selection of antibodies with improved trafficking and optimized IGF1R binding characteristics.
Collapse
Affiliation(s)
- Joey Sheff
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - John Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Mary Foss
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Eric Brunette
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Kristin Kemmerich
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Shalini Raphael
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Gerard Comamala
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.2100
| | - Kasper Rand
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.2100
| | - Danica B Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
3
|
Trempe F, Rossotti MA, Maqbool T, MacKenzie CR, Arbabi-Ghahroudi M. Llama DNA Immunization and Isolation of Functional Single-Domain Antibody Binders. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2446:37-70. [PMID: 35157268 DOI: 10.1007/978-1-0716-2075-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic immunization is a simple, cost-effective, and powerful tool for inducing innate and adaptive immune responses to combat infectious diseases and difficult-to-treat illnesses. DNA immunization is increasingly used in the generation of monoclonal antibodies against targets for which pure proteins are unavailable or are difficult to express and purify (e.g., ion channels and receptors, transmembrane proteins, and emerging infectious pathogens). Genetic immunization has been successfully utilized in small inbred laboratory animals (mostly rodents); however, low immunogenicity of DNA/RNA injected into large mammals, including humans, is still a major challenge. Here, we provide a method for the genetic immunization of llamas, using a combination of biolistic transfection with a gene gun and intradermal injection with a DERMOJET® device, to elicit heavy-chain IgG responses against epidermal growth factor receptor (EGFR). We show the technique can be used to generate single-domain antibodies (VHHs) with nanomolar affinities to EGFR. We provide methods for gene gun bullet preparation, llama immunization, serology, phage-display library construction and panning, and VHH characterization.
Collapse
Affiliation(s)
- Frédéric Trempe
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Martin A Rossotti
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | | | - C Roger MacKenzie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Mehdi Arbabi-Ghahroudi
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada. .,Department of Biology, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Gao X, Conard A, Yang C, Zhan Y, Zeng F, Shi J, Li W, Dimitrov DS, Gong R. Optimization of the C-Terminus of an Autonomous Human IgG1 CH2 Domain for Stability and Aggregation Resistance. Mol Pharm 2019; 16:3647-3656. [DOI: 10.1021/acs.molpharmaceut.9b00544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinyu Gao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alex Conard
- Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15261, United States
| | - Chunpeng Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yancheng Zhan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zeng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Wei Li
- Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15261, United States
| | - Dimiter S. Dimitrov
- Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15261, United States
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
5
|
Single-Domain Antibodies Represent Novel Alternatives to Monoclonal Antibodies as Targeting Agents against the Human Papillomavirus 16 E6 Protein. Int J Mol Sci 2019; 20:ijms20092088. [PMID: 31035322 PMCID: PMC6539864 DOI: 10.3390/ijms20092088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/18/2023] Open
Abstract
Approximately one fifth of all malignancies worldwide are etiologically associated with a persistent viral or bacterial infection. Thus, there is a particular interest in therapeutic molecules which use components of a natural immune response to specifically inhibit oncogenic microbial proteins, as it is anticipated they will elicit fewer off-target effects than conventional treatments. This concept has been explored in the context of human papillomavirus 16 (HPV16)-related cancers, through the development of monoclonal antibodies and fragments thereof against the viral E6 oncoprotein. Challenges related to the biology of E6 as well as the functional properties of the antibodies themselves appear to have precluded their clinical translation. Here, we addressed these issues by exploring the utility of the variable domains of camelid heavy-chain-only antibodies (denoted as VHHs). Through construction and panning of two llama, immune VHH phage display libraries, a pool of potential VHHs was isolated. The interactions of these with recombinant E6 were further characterized using an enzyme-linked immunosorbent assay (ELISA), Western blotting under denaturing and native conditions, and surface plasmon resonance. Three VHHs were identified that bound recombinant E6 with nanomolar affinities. Our results lead the way for subsequent studies into the ability of these novel molecules to inhibit HPV16-infected cells in vitro and in vivo.
Collapse
|
6
|
Hussack G, Baral TN, Baardsnes J, van Faassen H, Raphael S, Henry KA, Zhang J, MacKenzie CR. A Novel Affinity Tag, ABTAG, and Its Application to the Affinity Screening of Single-Domain Antibodies Selected by Phage Display. Front Immunol 2017; 8:1406. [PMID: 29163485 PMCID: PMC5674936 DOI: 10.3389/fimmu.2017.01406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
ABTAG is a camelid single-domain antibody (sdAb) that binds to bovine serum albumin (BSA) with low picomolar affinity. In surface plasmon resonance (SPR) analyses using BSA surfaces, bound ABTAG can be completely dissociated from the BSA surfaces at low pH, over multiple cycles, without any reduction in the capacity of the BSA surfaces to bind ABTAG. A moderate throughput, SPR-based, antibody screening assay exploiting the unique features of ABTAG is described. Anti-carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) sdAbs were isolated from a phage-displayed sdAb library derived from the heavy chain antibody repertoire of a llama immunized with CEACAM6. Following one or two rounds of panning, enriched clones were expressed as ABTAG fusions in microtiter plate cultures. The sdAb-ABTAG fusions from culture supernatants were captured on BSA surfaces and CEACAM6 antigen was then bound to the captured molecules. The SPR screening method gives a read-out of relative expression levels of the fusion proteins and kinetic and affinity constants for CEACAM6 binding by the captured molecules. The library was also panned and screened by conventional methods and positive clones were subcloned and expressed for SPR analysis. Compared to conventional panning and screening, the SPR-based ABTAG method yielded a considerably higher diversity of binders, some with affinities that were three orders of magnitude higher affinity than those identified by conventional panning.
Collapse
Affiliation(s)
- Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Toya Nath Baral
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Shalini Raphael
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Jianbing Zhang
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - C Roger MacKenzie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| |
Collapse
|
7
|
Julian MC, Lee CC, Tiller KE, Rabia LA, Day EK, Schick AJ, Tessier PM. Co-evolution of affinity and stability of grafted amyloid-motif domain antibodies. Protein Eng Des Sel 2015; 28:339-50. [PMID: 26386257 DOI: 10.1093/protein/gzv050] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/17/2015] [Indexed: 11/12/2022] Open
Abstract
An attractive approach for designing lead antibody candidates is to mimic natural protein interactions by grafting peptide recognition motifs into the complementarity-determining regions (CDRs). We are using this approach to generate single-domain (VH) antibodies specific for amyloid-forming proteins such as the Alzheimer's Aβ peptide. Here, we use random mutagenesis and yeast surface display to improve the binding affinity of a lead VH domain grafted with Aβ residues 33-42 in CDR3. Interestingly, co-selection for improved Aβ binding and VH display on the surface of yeast yields antibody domains with improved affinity and reduced stability. The highest affinity VH domains were strongly destabilized on the surface of yeast as well as unfolded when isolated as autonomous domains. In contrast, stable VH domains with improved affinity were reliably identified using yeast surface display by replacing the display antibody that recognizes a linear epitope tag at the terminus of both folded and unfolded VH domains with a conformational ligand (Protein A) that recognizes a discontinuous epitope on the framework of folded VH domains. Importantly, we find that selection for improved stability using Protein A without simultaneous co-selection for improved Aβ binding leads to strong enrichment for stabilizing mutations that reduce antigen binding. Our findings highlight the importance of simultaneously optimizing affinity and stability to improve the rapid isolation of well-folded and specific antibody fragments.
Collapse
Affiliation(s)
- Mark C Julian
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Christine C Lee
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kathryn E Tiller
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lilia A Rabia
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Evan K Day
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Arthur J Schick
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Peter M Tessier
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
8
|
Chan CEZ, Lim APC, MacAry PA, Hanson BJ. The role of phage display in therapeutic antibody discovery. Int Immunol 2014; 26:649-57. [PMID: 25135889 PMCID: PMC7185696 DOI: 10.1093/intimm/dxu082] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phage display involves the expression of selected proteins on the surface of filamentous phage through fusion with phage coat protein, with the genetic sequence packaged within, linking phenotype to genotype selection. When combined with antibody libraries, phage display allows for rapid in vitro selection of antigen-specific antibodies and recovery of their corresponding coding sequence. Large non-immune and synthetic human libraries have been constructed as well as smaller immune libraries based on capturing a single individual’s immune repertoire. This completely in vitro process allows for isolation of antibodies against poorly immunogenic targets as well as those that cannot be obtained by animal immunization, thus further expanding the utility of the approach. Phage antibody display represents the first developed methodology for high throughput screening for human therapeutic antibody candidates. Recently, other methods have been developed for generation of fully human therapeutic antibodies, such as single B-cell screening, next-generation genome sequencing and transgenic mice with human germline B-cell genes. While each of these have their particular advantages, phage display has remained a key methodology for human antibody discovery due its in vitro process. Here, we review the continuing role of this technique alongside other developing technologies for therapeutic antibody discovery.
Collapse
Affiliation(s)
- Conrad E Z Chan
- Biological Defence Program, Defense Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore
| | - Angeline P C Lim
- Biological Defence Program, Defense Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore
| | - Paul A MacAry
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore Immunology Program, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Brendon J Hanson
- Biological Defence Program, Defense Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| |
Collapse
|
9
|
Hussack G, Riazi A, Ryan S, van Faassen H, MacKenzie R, Tanha J, Arbabi-Ghahroudi M. Protease-resistant single-domain antibodies inhibit Campylobacter jejuni motility. Protein Eng Des Sel 2014; 27:191-8. [PMID: 24742504 DOI: 10.1093/protein/gzu011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Camelid heavy-chain antibody variable domains (VHHs) are emerging as potential antimicrobial reagents. We have engineered a previously isolated VHH (FlagV1M), which binds Campylobacter jejuni flagella, for greater thermal and proteolytic stability. Mutants of FlagV1M were obtained from an error-prone polymerase chain reaction library that was panned in the presence of gastrointestinal (GI) proteases. Additional FlagV1M mutants were obtained through disulfide-bond engineering. Each approach produced VHHs with enhanced thermal stability and protease resistance. When the beneficial mutations from both approaches were combined, a hyperstabilized VHH was created with superior stability. The hyperstabilized VHH bound C. jejuni flagella with wild-type affinity and was capable of potently inhibiting C. jejuni motility in assays performed after sequential digestion with three major GI proteases, demonstrating the remarkable stability imparted to the VHH by combining our engineering approaches.
Collapse
Affiliation(s)
- Greg Hussack
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, Canada K1A 0R6
| | - Ali Riazi
- AbCelex Technologies, Inc., Toronto, ON, Canada L4V 1T4
| | - Shannon Ryan
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, Canada K1A 0R6
| | - Henk van Faassen
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, Canada K1A 0R6
| | - Roger MacKenzie
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 School of Environmental Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Jamshid Tanha
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 School of Environmental Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1 Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Mehdi Arbabi-Ghahroudi
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 School of Environmental Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1 Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| |
Collapse
|
10
|
Perchiacca JM, Lee CC, Tessier PM. Optimal charged mutations in the complementarity-determining regions that prevent domain antibody aggregation are dependent on the antibody scaffold. Protein Eng Des Sel 2014; 27:29-39. [PMID: 24398633 DOI: 10.1093/protein/gzt058] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Therapeutic antibodies need to be highly resistant to aggregation due to the high concentrations required for subcutaneous delivery and the potential immunogenicity of antibody aggregates. Human antibody fragments-such as single-domain antibodies (VH or VL)-are typically much less soluble than full-length antibodies. Nevertheless, some aggregation-resistant VH domains have been discovered that are negatively charged at neutral pH and/or enriched in negatively charged residues within the complementarity-determining regions (CDRs). To better understand how to engineer diverse domain antibodies to resist aggregation, we have investigated the solubilizing activity of positively and negatively charged mutations within hydrophobic CDRs of multiple VH scaffolds that differ in their net charge. We find that negatively charged mutations inserted near the edges of hydrophobic CDRs are more effective than positively charged ones at inhibiting aggregation for VH scaffolds that are negatively or near-neutrally charged. In contrast, positively charged CDR mutations prevent aggregation better than negatively charged ones for a VH scaffold that is highly positively charged. Our findings suggest that the net charge of the antibody scaffold is a key determinant of the optimal CDR mutations for preventing aggregation. We expect that our findings will improve the design of aggregation-resistant antibodies with single- and multidomain scaffolds.
Collapse
Affiliation(s)
- Joseph M Perchiacca
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | |
Collapse
|
11
|
Salema V, Marín E, Martínez-Arteaga R, Ruano-Gallego D, Fraile S, Margolles Y, Teira X, Gutierrez C, Bodelón G, Fernández LÁ. Selection of single domain antibodies from immune libraries displayed on the surface of E. coli cells with two β-domains of opposite topologies. PLoS One 2013; 8:e75126. [PMID: 24086454 PMCID: PMC3781032 DOI: 10.1371/journal.pone.0075126] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/08/2013] [Indexed: 01/21/2023] Open
Abstract
Screening of antibody (Ab) libraries by direct display on the surface of E. coli cells is hampered by the presence of the outer membrane (OM). In this work we demonstrate that the native β-domains of EhaA autotransporter and intimin, two proteins from enterohemorrhagic E. coli O157:H7 (EHEC) with opposite topologies in the OM, are effective systems for the display of immune libraries of single domain Abs (sdAbs) from camelids (nanobodies or VHH) on the surface of E. coli K-12 cells and for the selection of high affinity sdAbs using magnetic cell sorting (MACS). We analyzed the capacity of EhaA and intimin β-domains to display individual sdAbs and sdAb libraries obtained after immunization with the extracellular domain of the translocated intimin receptor from EHEC (TirMEHEC). We demonstrated that both systems displayed functional sdAbs on the surface of E. coli cells with little proteolysis and cellular toxicity, although E. coli cells displaying sdAbs with the β-domain of intimin showed higher antigen-binding capacity. Both E. coli display libraries were screened for TirMEHEC binding clones by MACS. High affinity binders were selected by both display systems, although more efficiently with the intimin β-domain. The specificity of the selected clones against TirMEHEC was demonstrated by flow cytometry of E. coli cells, along with ELISA and surface plasmon resonance with purified sdAbs. Finally, we employed the E. coli cell display systems to provide an estimation of the affinity of the selected sdAb by flow cytometry analysis under equilibrium conditions.
Collapse
Affiliation(s)
- Valencio Salema
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
| | - Elvira Marín
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
| | - Rocio Martínez-Arteaga
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
| | - David Ruano-Gallego
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
| | - Sofía Fraile
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
| | - Yago Margolles
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
| | - Xema Teira
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
| | - Carlos Gutierrez
- Department of Animal Medicine and Surgery, Veterinary Faculty, Universidad de Las Palmas de Gran Canaria (UPGC), Las Palmas, Canary Islands, Spain
| | - Gustavo Bodelón
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
12
|
In vivo neutralization of α-cobratoxin with high-affinity llama single-domain antibodies (VHHs) and a VHH-Fc antibody. PLoS One 2013; 8:e69495. [PMID: 23894495 PMCID: PMC3718736 DOI: 10.1371/journal.pone.0069495] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/10/2013] [Indexed: 12/28/2022] Open
Abstract
Small recombinant antibody fragments (e.g. scFvs and VHHs), which are highly tissue permeable, are being investigated for antivenom production as conventional antivenoms consisting of IgG or F(ab')2 antibody fragments do not effectively neutralize venom toxins located in deep tissues. However, antivenoms composed entirely of small antibody fragments may have poor therapeutic efficacy due to their short serum half-lives. To increase serum persistence and maintain tissue penetration, we prepared low and high molecular mass antivenom antibodies. Four llama VHHs were isolated from an immune VHH-displayed phage library and were shown to have high affinity, in the low nM range, for α-cobratoxin (α-Cbtx), the most lethal component of Naja kaouthia venom. Subsequently, our highest affinity VHH (C2) was fused to a human Fc fragment to create a VHH2-Fc antibody that would offer prolonged serum persistence. After in planta (Nicotiana benthamiana) expression and purification, we show that our VHH2-Fc antibody retained high affinity binding to α-Cbtx. Mouse α-Cbtx challenge studies showed that our highest affinity VHHs (C2 and C20) and the VHH2-Fc antibody effectively neutralized lethality induced by α-Cbtx at an antibody:toxin molar ratio as low as ca. 0.75×:1. Further research towards the development of an antivenom therapeutic involving these anti-α-Cbtx VHHs and VHH2-Fc antibody molecules should involve testing them as a combination, to determine whether they maintain tissue penetration capability and low immunogenicity, and whether they exhibit improved serum persistence and therapeutic efficacy.
Collapse
|
13
|
Bodelón G, Palomino C, Fernández LÁ. Immunoglobulin domains inEscherichia coliand other enterobacteria: from pathogenesis to applications in antibody technologies. FEMS Microbiol Rev 2013; 37:204-50. [DOI: 10.1111/j.1574-6976.2012.00347.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/07/2012] [Accepted: 06/14/2012] [Indexed: 11/28/2022] Open
|
14
|
Abstract
Solubility and stability are amongst the factors contributing to the therapeutic efficacy of biologics. Human antibody heavy chain variable domains, VHs, are one class of biologics; improving VH biophysical properties is the focus of significant protein engineering efforts. Here, we describe an efficacy engineering approach which involves the introduction of a disulfide linkage in the VH core and which improves both VH solubility and stability. More specifically, we describe protocols for generation of disulfide engineered human VHs and their characterization in terms of disulfide linkage formation, non-aggregation, and stability. Our solubility/stability engineering approach may be applied to other VHs.
Collapse
|
15
|
Abstract
Antibody-based therapeutics have been successfully used for the treatment of various diseases and as research tools. Several well characterized, broadly neutralizing monoclonal antibodies (bnmAbs) targeting HIV-1 envelope glycoproteins or related host cell surface proteins show sterilizing protection of animals, but they are not effective when used for therapy of an established infection in humans. Recently, a number of novel bnmAbs, engineered antibody domains (eAds), and multifunctional fusion proteins have been reported which exhibit exceptionally potent and broad neutralizing activity against a wide range of HIV-1 isolates from diverse genetic subtypes. eAds could be more effective in vivo than conventional full-size antibodies generated by the human immune system. Because of their small size (12∼15 kD), they can better access sterically restricted epitopes and penetrate densely packed tissue where HIV-1 replicates than the larger full-size antibodies. HIV-1 possesses a number of mechanisms to escape neutralization by full-size antibodies but could be less likely to develop resistance to eAds. Here, we review the in vitro and in vivo antiviral efficacies of existing HIV-1 bnmAbs, summarize the development of eAds and multispecific fusion proteins as novel types of HIV-1 inhibitors, and discuss possible strategies to generate more potent antibody-based candidate therapeutics against HIV-1, including some that could be used to eradicate the virus.
Collapse
Affiliation(s)
- Rui Gong
- Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702-1201, USA.
| | | | | |
Collapse
|
16
|
Kim DY, Kandalaft H, Ding W, Ryan S, van Faassen H, Hirama T, Foote SJ, MacKenzie R, Tanha J. Disulfide linkage engineering for improving biophysical properties of human VH domains. Protein Eng Des Sel 2012; 25:581-9. [PMID: 22942392 DOI: 10.1093/protein/gzs055] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To enhance their therapeutic potential, human antibody heavy chain variable domains (V(H)s) would benefit from increased thermostability. The highly conserved disulfide linkage that connects Cys23 and Cys104 residues in the core of V(H) domains is crucial to their stability and function. It has previously been shown that the introduction of a second disulfide linkage can increase the thermostability of camelid heavy-chain antibody variable domains (V(H)Hs). Using four model domains we demonstrate that this strategy is also applicable to human V(H) domains. The introduced disulfide linkage, formed between Cys54 and Cys78 residues, increased the thermostability of V(H)s by 14-18°C. In addition, using a novel hexa-histidine capture technology, circular dichroism, turbidity, size exclusion chromatography and multiangle light scattering measurements, we demonstrate reduced V(H) aggregation in domains with the Cys54-Cys78 disulfide linkage. However, we also found that the engineered disulfide linkage caused conformational changes, as indicated by reduced binding of the V(H)s to protein A. This indicates that it may be prudent to use the synthetic V(H) libraries harboring the engineered disulfide linkage before screening for affinity reagents. Such strategies may increase the number of thermostable binders.
Collapse
Affiliation(s)
- Dae Young Kim
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada K1A 0R6
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hussack G, Keklikian A, Alsughayyir J, Hanifi-Moghaddam P, Arbabi-Ghahroudi M, van Faassen H, Hou ST, Sad S, MacKenzie R, Tanha J. A V(L) single-domain antibody library shows a high-propensity to yield non-aggregating binders. Protein Eng Des Sel 2012; 25:313-8. [PMID: 22490957 DOI: 10.1093/protein/gzs014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A synthetic human V(L) phage display library, created by the randomization of all complementarity-determining regions (CDRs) in a V(L) scaffold, was panned against three test antigens to determine the propensity of the library to yield non-aggregating binders. A total of 22 binders were isolated against the test antigens and the majority (20) were monomeric. Thus, human V(L) repertoires provide an efficient source of non-aggregating binders and represent an attractive alternative to human V(H) repertoires, which are notorious for containing high proportions of aggregating species. Moreover, the solubility of V(L)s, in contrast to V(H)s, appears much less CDR dependent.
Collapse
Affiliation(s)
- Greg Hussack
- Institute for Biological Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Baral TN, Chao SY, Li S, Tanha J, Arbabi-Ghahroudi M, Zhang J, Wang S. Crystal structure of a human single domain antibody dimer formed through V(H)-V(H) non-covalent interactions. PLoS One 2012; 7:e30149. [PMID: 22253912 PMCID: PMC3257273 DOI: 10.1371/journal.pone.0030149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/13/2011] [Indexed: 12/13/2022] Open
Abstract
Single-domain antibodies (sdAbs) derived from human VH are considered to be less soluble and prone to aggregate which makes it difficult to determine the crystal structures. In this study, we isolated and characterized two anti-human epidermal growth factor receptor-2 (HER2) sdAbs, Gr3 and Gr6, from a synthetic human VH phage display library. Size exclusion chromatography and surface plasmon resonance analyses demonstrated that Gr3 is a monomer, but that Gr6 is a strict dimer. To understand this different molecular behavior, we solved the crystal structure of Gr6 to 1.6 Å resolution. The crystal structure revealed that the homodimer assembly of Gr6 closely mimics the VH-VL heterodimer of immunoglobulin variable domains and the dimerization interface is dominated by hydrophobic interactions.
Collapse
Affiliation(s)
- Toya Nath Baral
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Shi-Yu Chao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shenghua Li
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jamshid Tanha
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Mehdi Arbabi-Ghahroudi
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jianbing Zhang
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
- * E-mail: (SW); (JZ)
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (SW); (JZ)
| |
Collapse
|
19
|
Abstract
In this chapter we describe in detail the current protocols that are used to express single-domain antibodies in bacteria. Bacteria are among the most common expression systems for expressing recombinant proteins. We present different approaches for carrying out periplasmic and cytoplasmic expression, as well as small-scale and large-scale expression. In addition, we discuss the advantages and possible drawbacks of each protocol. We present data related to expression vectors, expression conditions, methods of protein extraction and purification, and yield and purity analysis of sdAbs. We also highlight important points that need to be considered before sdAbs that have been expressed in bacteria are used either in vitro or in vivo.
Collapse
|
20
|
Hussack G, Arbabi-Ghahroudi M, Mackenzie CR, Tanha J. Isolation and characterization of Clostridium difficile toxin-specific single-domain antibodies. Methods Mol Biol 2012; 911:211-39. [PMID: 22886255 DOI: 10.1007/978-1-61779-968-6_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Camelidae single-domain antibodies (VHHs) are a unique class of small binding proteins that are promising inhibitors of targets relevant to infection and immunity. With VHH selection from hyperimmunized phage display libraries now routine and the fact that VHHs possess long, extended complementarity-determining region (CDR3) loop structures that can access traditionally immunosilent epitopes, VHH-based inhibition of targets such as bacterial toxins are being explored. Toxin A and toxin B are high molecular weight exotoxins (308 kDa and 269 kDa, respectively) secreted by Clostridium difficile that are the causative agents of C. difficile-associated diseases in humans and in animals. Here, we provide protocols for the rapid generation of C. difficile toxin A- and toxin B-specific VHHs by llama immunization and recombinant antibody/phage display technology approaches and for further characterization of the VHHs with respect to toxin-binding affinity and specificity and the conformational nature of their epitopes.
Collapse
Affiliation(s)
- Greg Hussack
- Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
21
|
Hussack G, Hirama T, Ding W, MacKenzie R, Tanha J. Engineered single-domain antibodies with high protease resistance and thermal stability. PLoS One 2011; 6:e28218. [PMID: 22140551 PMCID: PMC3227653 DOI: 10.1371/journal.pone.0028218] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/03/2011] [Indexed: 11/28/2022] Open
Abstract
The extreme pH and protease-rich environment of the upper gastrointestinal tract is a major obstacle facing orally-administered protein therapeutics, including antibodies. Through protein engineering, several Clostridium difficile toxin A-specific heavy chain antibody variable domains (VHHs) were expressed with an additional disulfide bond by introducing Ala/Gly54Cys and Ile78Cys mutations. Mutant antibodies were compared to their wild-type counterparts with respect to expression yield, non-aggregation status, affinity for toxin A, circular dichroism (CD) structural signatures, thermal stability, protease resistance, and toxin A-neutralizing capacity. The mutant VHHs were found to be well expressed, although with lower yields compared to wild-type counterparts, were non-aggregating monomers, retained low nM affinity for toxin A, albeit the majority showed somewhat reduced affinity compared to wild-type counterparts, and were capable of in vitro toxin A neutralization in cell-based assays. Far-UV and near-UV CD spectroscopy consistently showed shifts in peak intensity and selective peak minima for wild-type and mutant VHH pairs; however, the overall CD profile remained very similar. A significant increase in the thermal unfolding midpoint temperature was observed for all mutants at both neutral and acidic pH. Digestion of the VHHs with the major gastrointestinal proteases, at biologically relevant concentrations, revealed a significant increase in pepsin resistance for all mutants and an increase in chymotrypsin resistance for the majority of mutants. Mutant VHH trypsin resistance was similar to that of wild-type VHHs, although the trypsin resistance of one VHH mutant was significantly reduced. Therefore, the introduction of a second disulfide bond in the hydrophobic core not only increases VHH thermal stability at neutral pH, as previously shown, but also represents a generic strategy to increase VHH stability at low pH and impart protease resistance, with only minor perturbations in target binding affinities. These are all desirable characteristics for the design of protein-based oral therapeutics.
Collapse
Affiliation(s)
- Greg Hussack
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tomoko Hirama
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Wen Ding
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Roger MacKenzie
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jamshid Tanha
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Hussack G, Arbabi-Ghahroudi M, van Faassen H, Songer JG, Ng KKS, MacKenzie R, Tanha J. Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain. J Biol Chem 2011; 286:8961-76. [PMID: 21216961 DOI: 10.1074/jbc.m110.198754] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a leading cause of nosocomial infection in North America and a considerable challenge to healthcare professionals in hospitals and nursing homes. The gram-positive bacterium produces two high molecular weight exotoxins, toxin A (TcdA) and toxin B (TcdB), which are the major virulence factors responsible for C. difficile-associated disease and are targets for C. difficile-associated disease therapy. Here, recombinant single-domain antibody fragments (V(H)Hs), which specifically target the cell receptor binding domains of TcdA or TcdB, were isolated from an immune llama phage display library and characterized. Four V(H)Hs (A4.2, A5.1, A20.1, and A26.8), all shown to recognize conformational epitopes, were potent neutralizers of the cytopathic effects of toxin A on fibroblast cells in an in vitro assay. The neutralizing potency was further enhanced when V(H)Hs were administered in paired or triplet combinations at the same overall V(H)H concentration, suggesting recognition of nonoverlapping TcdA epitopes. Biacore epitope mapping experiments revealed that some synergistic combinations consisted of V(H)Hs recognizing overlapping epitopes, an indication that factors other than mere epitope blocking are responsible for the increased neutralization. Further binding assays revealed TcdA-specific V(H)Hs neutralized toxin A by binding to sites other than the carbohydrate binding pocket of the toxin. With favorable characteristics such as high production yield, potent toxin neutralization, and intrinsic stability, these V(H)Hs are attractive systemic therapeutics but are more so as oral therapeutics in the destabilizing environment of the gastrointestinal tract.
Collapse
Affiliation(s)
- Greg Hussack
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Recombinant antibody fragments are significant therapeutic and diagnostic reagents. As such, their efficacy depends heavily on their affinities and biophysical properties. Thus, mutagenesis approaches have been extensively applied to recombinant antibodies to improve their affinity, stability, and solubility. Among the existing recombinant antibody variants, human V(H) domains stand out as the ones with the general need of solubility engineering at some point during their development; this solubility engineering step transforms V(H)s into nonaggregating, functional entities, rendering them useful as therapeutic and diagnostic reagents. Here, we present one of several approaches that have been employed to develop nonaggregating human V(H) domains. We apply an in vitro site-directed mutagenesis approach to an aggregating human V(H) domain by means of a splice overlap extension technique. The resultant mutant V(H)s are nonaggregating in contrast to the parent wild type V(H) and less prone to aggregation following thermal unfolding.
Collapse
|
24
|
Kim DY, Tanha J. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis for screening nonaggregating human antibody heavy chain variable domains. Anal Biochem 2010; 403:117-9. [DOI: 10.1016/j.ab.2010.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 11/27/2022]
|
25
|
Kvam E, Sierks MR, Shoemaker CB, Messer A. Physico-chemical determinants of soluble intrabody expression in mammalian cell cytoplasm. Protein Eng Des Sel 2010; 23:489-98. [PMID: 20378699 PMCID: PMC2865363 DOI: 10.1093/protein/gzq022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/02/2010] [Accepted: 03/12/2010] [Indexed: 12/25/2022] Open
Abstract
Soluble antibody fragments are desirable not only as potential therapeutic and diagnostic agents for extracellular targets but also as 'intrabodies' for functional genomics, proteomics and gene therapy inside cells. However, antibody fragments are notoriously aggregation-prone when expressed intracellularly, due in part to unfavorable redox potential and macromolecular crowding in cell cytoplasm. Only a small proportion of intrabodies are soluble in cytoplasm and little is known about the sequence determinants that confer such stability. By comparing the cytoplasmic expression of several related human single-chain variable fragments and camelid V(HH)s in mammalian cells, we report that intrabody solubility is highly influenced by CDR content and is improved by an overall negative charge at cytoplasmic pH and reduced hydrophilicity. We hypothesize that ionic repulsion and weak hydrophobic interactions compensate, to different extents, for impaired disulfide bond formation in cytoplasm, thereby decreasing the risk for intrabody aggregation. As proof of principle, we demonstrate that the soluble expression of an aggregation-prone positively charged intrabody is modestly enhanced via cis or trans acidification using highly charged peptide tags (3XFLAG tag, SV40 NLS). These findings suggest that simple sequence analysis and electrostatic manipulation may aid in predicting and engineering solubility-enhanced intrabodies from antibody libraries for intracellular use.
Collapse
Affiliation(s)
- Erik Kvam
- New York State Department of Health, Wadsworth Center/ David Axelrod Institute, 120 New Scotland Ave., PO Box 22002, Albany, NY 12201-2002, USA
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Michael R. Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, AZ, USA
| | - Charles B. Shoemaker
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Anne Messer
- New York State Department of Health, Wadsworth Center/ David Axelrod Institute, 120 New Scotland Ave., PO Box 22002, Albany, NY 12201-2002, USA
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|