1
|
Murach KA, Fry CS, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation. FASEB J 2021; 35:e21893. [PMID: 34480776 PMCID: PMC9293230 DOI: 10.1096/fj.202101096r] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Satellite cells support adult skeletal muscle fiber adaptations to loading in numerous ways. The fusion of satellite cells, driven by cell-autonomous and/or extrinsic factors, contributes new myonuclei to muscle fibers, associates with load-induced hypertrophy, and may support focal membrane damage repair and long-term myonuclear transcriptional output. Recent studies have also revealed that satellite cells communicate within their niche to mediate muscle remodeling in response to resistance exercise, regulating the activity of numerous cell types through various mechanisms such as secretory signaling and cell-cell contact. Muscular adaptation to resistance and endurance activity can be initiated and sustained for a period of time in the absence of satellite cells, but satellite cell participation is ultimately required to achieve full adaptive potential, be it growth, function, or proprioceptive coordination. While significant progress has been made in understanding the roles of satellite cells in adult muscle over the last few decades, many conclusions have been extrapolated from regeneration studies. This review highlights our current understanding of satellite cell behavior and contributions to adaptation outside of regeneration in adult muscle, as well as the roles of satellite cells beyond fusion and myonuclear accretion, which are gaining broader recognition.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Vial J, Huchedé P, Fagault S, Basset F, Rossi M, Geoffray J, Soldati H, Bisaccia J, Elsensohn MH, Creveaux M, Neves D, Blay JY, Fauvelle F, Bouquet F, Streichenberger N, Corradini N, Bergeron C, Maucort-Boulch D, Castets P, Carré M, Weber K, Castets M. Low expression of ANT1 confers oncogenic properties to rhabdomyosarcoma tumor cells by modulating metabolism and death pathways. Cell Death Discov 2020; 6:64. [PMID: 32728477 PMCID: PMC7382490 DOI: 10.1038/s41420-020-00302-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 01/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most frequent form of pediatric soft-tissue sarcoma. It is divided into two main subtypes: ERMS (embryonal) and ARMS (alveolar). Current treatments are based on chemotherapy, surgery, and radiotherapy. The 5-year survival rate has plateaued at 70% since 2000, despite several clinical trials. RMS cells are thought to derive from the muscle lineage. During development, myogenesis includes the expansion of muscle precursors, the elimination of those in excess by cell death and the differentiation of the remaining ones into myofibers. The notion that these processes may be hijacked by tumor cells to sustain their oncogenic transformation has emerged, with RMS being considered as the dark side of myogenesis. Thus, dissecting myogenic developmental programs could improve our understanding of RMS molecular etiology. We focused herein on ANT1, which is involved in myogenesis and is responsible for genetic disorders associated with muscle degeneration. ANT1 is a mitochondrial protein, which has a dual functionality, as it is involved both in metabolism via the regulation of ATP/ADP release from mitochondria and in regulated cell death as part of the mitochondrial permeability transition pore. Bioinformatics analyses of transcriptomic datasets revealed that ANT1 is expressed at low levels in RMS. Using the CRISPR-Cas9 technology, we showed that reduced ANT1 expression confers selective advantages to RMS cells in terms of proliferation and resistance to stress-induced death. These effects arise notably from an abnormal metabolic switch induced by ANT1 downregulation. Restoration of ANT1 expression using a Tet-On system is sufficient to prime tumor cells to death and to increase their sensitivity to chemotherapy. Based on our results, modulation of ANT1 expression and/or activity appears as an appealing therapeutic approach in RMS management.
Collapse
Affiliation(s)
- J. Vial
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - P. Huchedé
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - S. Fagault
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - F. Basset
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - M. Rossi
- Aix-Marseille Université, Inserm UMR_S 911, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de pharmacie, Marseille, France
| | - J. Geoffray
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - H. Soldati
- Department of Cell Physiology and Metabolism, University of Geneva, CMU, CH-1211 Geneva, Switzerland
| | - J. Bisaccia
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - M. H. Elsensohn
- Service de Biostatistique—Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, F-69003 Lyon, France
| | - M. Creveaux
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | | | - J. Y. Blay
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - F. Fauvelle
- Université Grenoble Alpes, INSERM, US17, MRI facility IRMaGe, 38000 Grenoble, France
| | - F. Bouquet
- Roche Institute, Boulogne-Billancourt, France
| | - N. Streichenberger
- Hospices Civils de Lyon, Lyon, France
- INMG CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon, Lyon, France
| | - N. Corradini
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - C. Bergeron
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - D. Maucort-Boulch
- Service de Biostatistique—Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, F-69003 Lyon, France
| | - P. Castets
- Department of Cell Physiology and Metabolism, University of Geneva, CMU, CH-1211 Geneva, Switzerland
| | - M. Carré
- Aix-Marseille Université, Inserm UMR_S 911, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de pharmacie, Marseille, France
| | - K. Weber
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - M. Castets
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
3
|
Takahashi K, Itakura E, Takano K, Endo T. DA-Raf, a dominant-negative regulator of the Ras–ERK pathway, is essential for skeletal myocyte differentiation including myoblast fusion and apoptosis. Exp Cell Res 2019; 376:168-180. [DOI: 10.1016/j.yexcr.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/19/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
|
4
|
Harazi A, Chaouat M, Shlomai Z, Levitzki R, Becker-Cohen M, Sadeh M, Dabby R, Ben-Bassat H, Mitrani-Rosenbaum S. Survival-apoptosis associated signaling in GNE myopathy-cultured myoblasts. J Recept Signal Transduct Res 2014; 35:249-57. [PMID: 25510413 DOI: 10.3109/10799893.2014.956755] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
GNE Myopathy (GNEM) is a neuromuscular disorder caused by mutations in the GNE gene. It is a slowly progressive distal and proximal muscle weakness sparing the quadriceps. In this study, we applied our model of mutated M743T GNE enzyme skeletal muscle-cultured myoblasts and paired healthy controls to depict the pattern of signaling proteins controlling survival and/or apoptosis of the PI3K/AKT, BCL2, ARTS/XIAP pathways, examined the effects of metabolic changes/stimuli on their expression and activation, and their potential role in GNEM. Immunoblot analysis of the GNEM myoblasts indicated a notable increased level of activated PTEN and PDK1 and a trend of relative differences in the expression and activation of the examined signaling molecules with variability among the cultures. ANOVA analysis showed a highly significant interaction between the level of PTEN and the patients groups. In parallel, the interaction between the level of BCL2, BAX and PTEN with the specific PI3K/AKT inhibitor-LY294002 was highly significant for BCL2 and nearly significant for PTEN and BAX. The pattern of the ARTS/XIAP signaling proteins of GNEM and the paired controls was variable, with no significant differences between the two cell types. The response of the GNEM cells to the metabolic changes/stimuli: serum depletion and insulin challenge, as indicated by expression of selected signaling proteins, was variable and similar to the control cells. Taken together, our observations provide a clearer insight into specific signaling molecules influencing growth and survival of GNEM muscle cells.
Collapse
Affiliation(s)
- Avi Harazi
- a Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | - Malka Chaouat
- b Israel National Skin Bank, Laboratory of Experimental Surgery , Hadassah-Hebrew University Medical Center , Jerusalem , Israel , and
| | - Zippora Shlomai
- b Israel National Skin Bank, Laboratory of Experimental Surgery , Hadassah-Hebrew University Medical Center , Jerusalem , Israel , and
| | - Robina Levitzki
- b Israel National Skin Bank, Laboratory of Experimental Surgery , Hadassah-Hebrew University Medical Center , Jerusalem , Israel , and
| | - Michal Becker-Cohen
- a Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| | | | - Ron Dabby
- c Wolfson Medical Center , Holon , Israel
| | - Hannah Ben-Bassat
- b Israel National Skin Bank, Laboratory of Experimental Surgery , Hadassah-Hebrew University Medical Center , Jerusalem , Israel , and
| | - Stella Mitrani-Rosenbaum
- a Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center , Jerusalem , Israel
| |
Collapse
|
5
|
Yeh YC, Kim ST, Tang R, Yan B, Rotello VM. Insulin-Based Regulation of Glucose-functionalized Nanoparticle Uptake in Muscle Cells. J Mater Chem B 2014; 2:10.1039/C4TB00608A. [PMID: 25089564 PMCID: PMC4116632 DOI: 10.1039/c4tb00608a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Effective regulation of nanoparticle (NP) uptake facilitates the NP-based therapeutics and diagnostics. Here, we report the use of insulin and 2-deoxyglucose (2-DG) to modulate the cellular uptake of glucose-functionalized quantum dots (Glc-QDs) in C2C12 muscle cells. The cellular uptake of Glc-QDs can be modulated up to almost two-fold under insulin stimulation while be down-regulated in the presence of 2-DG. These results demonstrate the use of secondary regulators to control the cellular uptake of NPs through membrane protein recognition in a specific and fine-tunable fashion.
Collapse
Affiliation(s)
| | | | - Rui Tang
- Department of Chemistry, University of Massachusetts at Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel.: (+1) 413-545-2058; Fax: (+1) 413-545-4490
| | - Bo Yan
- Department of Chemistry, University of Massachusetts at Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel.: (+1) 413-545-2058; Fax: (+1) 413-545-4490
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts at Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel.: (+1) 413-545-2058; Fax: (+1) 413-545-4490
| |
Collapse
|
6
|
Gross SM, Rotwein P. Live cell imaging reveals marked variability in myoblast proliferation and fate. Skelet Muscle 2013; 3:10. [PMID: 23638706 PMCID: PMC3712004 DOI: 10.1186/2044-5040-3-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/28/2013] [Indexed: 11/29/2022] Open
Abstract
Background During the process of muscle regeneration, activated stem cells termed satellite cells proliferate, and then differentiate to form new myofibers that restore the injured area. Yet not all satellite cells contribute to muscle repair. Some continue to proliferate, others die, and others become quiescent and are available for regeneration following subsequent injury. The mechanisms that regulate the adoption of different cell fates in a muscle cell precursor population remain unclear. Methods We have used live cell imaging and lineage tracing to study cell fate in the C2 myoblast line. Results Analyzing the behavior of individual myoblasts revealed marked variability in both cell cycle duration and viability, but similarities between cells derived from the same parental lineage. As a consequence, lineage sizes and outcomes differed dramatically, and individual lineages made uneven contributions toward the terminally differentiated population. Thus, the cohort of myoblasts undergoing differentiation at the end of an experiment differed dramatically from the lineages present at the beginning. Treatment with IGF-I increased myoblast number by maintaining viability and by stimulating a fraction of cells to complete one additional cell cycle in differentiation medium, and as a consequence reduced the variability of the terminal population compared with controls. Conclusion Our results reveal that heterogeneity of responses to external cues is an intrinsic property of cultured myoblasts that may be explained in part by parental lineage, and demonstrate the power of live cell imaging for understanding how muscle differentiation is regulated.
Collapse
Affiliation(s)
- Sean M Gross
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA.
| | | |
Collapse
|
7
|
Chen Y, Melton DW, Gelfond JAL, McManus LM, Shireman PK. MiR-351 transiently increases during muscle regeneration and promotes progenitor cell proliferation and survival upon differentiation. Physiol Genomics 2012; 44:1042-51. [PMID: 22968638 DOI: 10.1152/physiolgenomics.00052.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MicroRNAs (miRNAs) regulate many biological processes including muscle development. However, little is known regarding miRNA regulation of muscle regeneration. Murine tibialis anterior muscle was evaluated after cardiotoxin-induced injury and used for global miRNA expression analysis. From day 1 through day 21 following injury, 298 miRNAs were significantly changed at least at one time point, including 86 miRNAs that were altered >10-fold compared with uninjured skeletal muscle. Temporal miRNA expression patterns included inflammation-related miRNAs (miR-223 and -147) that increased immediately after injury; this pattern contrasted to that of mature muscle-specific miRNAs (miR-1, -133a, and -499) that abruptly decreased following injury followed by upregulation in later regenerative events. Another cluster of miRNAs were transiently increased in the early days of muscle regeneration including miR-351, a miRNA that was also transiently expressed during myogenic progenitor cell (MPC) differentiation in vitro. Based on computational predictions, further studies demonstrated that E2f3 was a target of miR-351 in myoblasts. Moreover, knockdown of miR-351 expression inhibited MPC proliferation and promoted apoptosis during MPC differentiation, whereas miR-351 overexpression protected MPC from apoptosis during differentiation. Collectively, these observations suggest that miR-351 is involved in both the maintenance of MPC proliferation and the transition into differentiated myotubes. Thus, a novel, time-dependent sequence of molecular events during muscle regeneration has been identified; miR-351 inhibits E2f3 expression, a key regulator of cell cycle progression and proliferation, and promotes MPC proliferation and protects early differentiating MPC from apoptosis, important events in the hostile tissue environment after acute muscle injury.
Collapse
Affiliation(s)
- Yongxin Chen
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | | | | |
Collapse
|
8
|
Porreca I, De Felice E, Fagman H, Di Lauro R, Sordino P. Zebrafish bcl2l is a survival factor in thyroid development. Dev Biol 2012; 366:142-52. [DOI: 10.1016/j.ydbio.2012.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 03/17/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
|
9
|
Sun R, Chen W, Zhao X, Li T, Song Q. Acheron regulates vascular endothelial proliferation and angiogenesis together with Id1 during wound healing. Cell Biochem Funct 2011; 29:636-40. [PMID: 22139627 DOI: 10.1002/cbf.1799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/13/2011] [Accepted: 07/19/2011] [Indexed: 01/08/2023]
Abstract
RNA binding protein acheron has proved to be either the mediator of integrin-extracellular matrix interactions or the regulatory factor that participates in vertebrate development, cell differentiation and cell death. We report the role of acheron in vascular endothelial proliferation, angiogenesis and wound healing post-trauma. Co-immunoprecipitation showed that Acheron forms a ternary complex with β1 integrin and Id1 in human umbilical vein endothelial cells following stimulation with serious trauma serum. Acheron, vascular endothelial growth factor (VEGF), and β1 integrin mRNA expression was apparently inhibited, and capillary density and wound healing rate also were reduced in Id1-deficient mice trauma model. Acheron together with Id1 significantly induces VEGF, not CD105 level inhibition by serious trauma serum for 24 h. In conclusion, we have demonstrated that acheron may be an effective mediator of promoting endothelial proliferation, angiogenesis and wound healing probably by regulating VEGF together with Id1.
Collapse
Affiliation(s)
- Rongju Sun
- Department of Emergency, General Hospital of PLA, Beijing, China
| | | | | | | | | |
Collapse
|
10
|
Hirai H, Verma M, Watanabe S, Tastad C, Asakura Y, Asakura A. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. ACTA ACUST UNITED AC 2011; 191:347-65. [PMID: 20956382 PMCID: PMC2958479 DOI: 10.1083/jcb.201006025] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Suppression of the myogenic transcription factor MyoD is required for maintenance of muscle stem cells. The molecules that regulate the apoptosis cascade are also involved in differentiation and syncytial fusion in skeletal muscle. MyoD is a myogenic transcription factor that plays essential roles in muscle differentiation. We noticed that MyoD−/− myoblasts display remarkable resistance to apoptosis by down-regulation of miR-1 (microRNA-1) and miR-206 and by up-regulation of Pax3. This resulted in transcriptional activation of antiapoptotic factors Bcl-2 and Bcl-xL. Forced MyoD expression induces up-regulation of miR-1 and miR-206 and down-regulation of Pax3, Bcl-2, and Bcl-xL along with increased apoptosis in MyoD−/− myoblasts. In contrast, MyoD gene knockdown increases cell survival of wild-type myoblasts. The 3′ untranslated region of Pax3 mRNA contains two conserved miR-1/miR-206–binding sites, which are required for targeting of these microRNAs (miRNAs). Therefore, these data suggest that MyoD not only regulates terminal differentiation but also apoptosis through miRNA-mediated down-regulation of Pax3. Finally, MyoD, miR-1, and miR-206 are all down-regulated in quiescent satellite cells, which may be required for maintenance of muscle stem cells.
Collapse
Affiliation(s)
- Hiroyuki Hirai
- Stem Cell Institute, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
11
|
Glenn HL, Wang Z, Schwartz LM. Acheron, a Lupus antigen family member, regulates integrin expression, adhesion, and motility in differentiating myoblasts. Am J Physiol Cell Physiol 2010; 298:C46-55. [PMID: 19889961 PMCID: PMC2806151 DOI: 10.1152/ajpcell.00387.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 11/03/2009] [Indexed: 01/20/2023]
Abstract
Acheron (Achn) was originally identified as novel gene that is induced when insect muscles become committed to die at the end of metamorphosis. In separate studies, we have demonstrated that Achn acts upstream of MyoD and is required by mammalian myoblasts to either differentiate or undergo apoptosis following loss of growth factors. In the present study we examined the role of Achn in regulating integrin-extracellular matrix interactions that are required for myogenesis. Both control C2C12 myoblasts and those engineered to express ectopic Achn expressed the fibronectin receptor integrin alpha(5)beta(1) in the presence of growth factors and the laminin receptor alpha(7)beta(1) following growth factor withdrawal. Expression of the laminin receptor was blocked in cells expressing either Achn antisense or an Achn deletion mutant that blocks differentiation. Control cells and those expressing ectopic Achn undergo sequential and transient increases in both substrate adhesion and migration before cell fusion. Blockade of Achn expression reduced these effects on laminin but not on fibronectin. Taken together, these data suggest that Achn may influence differentiation in part via its control of cell adhesion dynamics.
Collapse
Affiliation(s)
- Honor L Glenn
- Pioneer Valley Life Sciences Institute, 3601 Main St., Springfield, MA 01199, USA.
| | | | | |
Collapse
|