1
|
Zhang L, Chen D, Song D, Liu X, Zhang Y, Xu X, Wang X. Clinical and translational values of spatial transcriptomics. Signal Transduct Target Ther 2022; 7:111. [PMID: 35365599 PMCID: PMC8972902 DOI: 10.1038/s41392-022-00960-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
The combination of spatial transcriptomics (ST) and single cell RNA sequencing (scRNA-seq) acts as a pivotal component to bridge the pathological phenomes of human tissues with molecular alterations, defining in situ intercellular molecular communications and knowledge on spatiotemporal molecular medicine. The present article overviews the development of ST and aims to evaluate clinical and translational values for understanding molecular pathogenesis and uncovering disease-specific biomarkers. We compare the advantages and disadvantages of sequencing- and imaging-based technologies and highlight opportunities and challenges of ST. We also describe the bioinformatics tools necessary on dissecting spatial patterns of gene expression and cellular interactions and the potential applications of ST in human diseases for clinical practice as one of important issues in clinical and translational medicine, including neurology, embryo development, oncology, and inflammation. Thus, clear clinical objectives, designs, optimizations of sampling procedure and protocol, repeatability of ST, as well as simplifications of analysis and interpretation are the key to translate ST from bench to clinic.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, 200000, China
| | - Dongsheng Chen
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Dongli Song
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, 200000, China
| | - Xiaoxia Liu
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, 200000, China
| | - Yanan Zhang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xiangdong Wang
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, 200000, China.
| |
Collapse
|
2
|
Abstract
As RNA in situ hybridization (ISH) moves into the mainstream lab and increasingly into clinical adoption and additional multiplexing techniques are developed to enable further RNA ISH identification, a set of guidelines on the validation of ISH is required. These guidelines include choice of methods, appropriate controls, and protocol optimization as well as a central core message of understanding the target, understanding the ISH technique, and using the most appropriate controlling mechanisms to enable reproducible and trustworthy data to be obtained.
Collapse
|
3
|
Behjati S, Lindsay S, Teichmann SA, Haniffa M. Mapping human development at single-cell resolution. Development 2018; 145:145/3/dev152561. [PMID: 29439135 DOI: 10.1242/dev.152561] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human development is regulated by spatiotemporally restricted molecular programmes and is pertinent to many areas of basic biology and human medicine, such as stem cell biology, reproductive medicine and childhood cancer. Mapping human development has presented significant technological, logistical and ethical challenges. The availability of established human developmental biorepositories and the advent of cutting-edge single-cell technologies provide new opportunities to study human development. Here, we present a working framework for the establishment of a human developmental cell atlas exploiting single-cell genomics and spatial analysis. We discuss how the development atlas will benefit the scientific and clinical communities to advance our understanding of basic biology, health and disease.
Collapse
Affiliation(s)
- Sam Behjati
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK .,Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Susan Lindsay
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK .,Theory of Condensed Matter, Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK .,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| |
Collapse
|
4
|
Khin NC, Lowe JL, Jensen LM, Burgio G. No evidence for genome editing in mouse zygotes and HEK293T human cell line using the DNA-guided Natronobacterium gregoryi Argonaute (NgAgo). PLoS One 2017; 12:e0178768. [PMID: 28609472 PMCID: PMC5469460 DOI: 10.1371/journal.pone.0178768] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/18/2017] [Indexed: 01/31/2023] Open
Abstract
A recently published research article reported that the extreme halophile archaebacterium Natronobacterium gregoryi Argonaute enzyme (NgAgo) could cleave the cellular DNA under physiological temperature conditions in cell line and be implemented as an alternative to CRISPR/Cas9 genome editing technology. We assessed this claim in mouse zygotes for four loci (Sptb, Tet-1, Tet-2 and Tet-3) and in the human HEK293T cell line for the EMX1 locus. Over 100 zygotes were microinjected with nls-NgAgo-GK plasmid provided from Addgene and various concentrations of 5’-phosphorylated guide DNA (gDNA) from 2.5 ng/μl to 50 ng/μl and cultured to blastocyst stage of development. The presence of indels was verified using T7 endonuclease 1 assay (T7E1) and Sanger sequencing. We reported no evidence of successful editing of the mouse genome. We then assessed the lack of editing efficiency in HEK293T cell line for the EMX1 endogenous locus by monitoring the NgAgo protein expression level and the editing efficiency by T7E1 assay and Sanger sequencing. We reported that the NgAgo protein was expressed from 8 hours to a maximum expression at 48 hours post-transfection, confirming the efficient delivery of the plasmid and the gDNA but no evidence of successful editing of EMX1 target in all transfected samples. Together our findings indicate that we failed to edit using NgAgo.
Collapse
Affiliation(s)
- Nay Chi Khin
- Department of Immunology and Infectious Diseases, the John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Jenna L. Lowe
- Department of Immunology and Infectious Diseases, the John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Lora M. Jensen
- Department of Immunology and Infectious Diseases, the John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Diseases, the John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
5
|
Moreno Uribe LM, Ray A, Blanchette DR, Dawson DV, Southard TE. Phenotype-genotype correlations of facial width and height proportions in patients with Class II malocclusion. Orthod Craniofac Res 2016; 18 Suppl 1:100-8. [PMID: 25865538 DOI: 10.1111/ocr.12084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To characterize soft-tissue facial height and width variation in Class II malocclusion and test for correlations with genes HMGA2, AJUBA, and ADK. SETTING AND SAMPLE POPULATION Nine facial proportions were estimated from 2D frontal repose photographs of 330 Caucasian adults with Class II malocclusion. MATERIAL AND METHODS After adjustments for age and gender, the facial proportions were submitted to a principal component analyses (PCA). The most meaningful phenotypic variations were correlated with SNPs rs7924176 (ADK), rs17101923 (HMGA2), and rs997154 (AJUBA) genotyped in 106 individuals. RESULTS Principal component analyses resulted in four principal components (PCs), which explained 75% of total variation. PC1 captured variation in the intercanthus distance and explained 28% of total variation. PC2 explained 21% of the variations in facial taper and facial index. PC3 explained 14% and reflected variations in the vertical dimension of the lower face. PC4 explained 12% and captured variations in distance between the eyes, width of the commissures, and the length of the superior aspect of the lower face height corresponding to the vertical dimension of the philtrum of the upper lip. A suggestive association (p<0.05) was observed between PC4 and rs997154 corroborating the role of AJUBA in variation of facial dimensions. CONCLUSION 2D frontal photographs can be used to derive quantitative measures of soft-tissue phenotypes that are of clinical relevance. The methods described are suitable for discovery and replication of associations between genotypes and malocclusion phenotypes.
Collapse
Affiliation(s)
- L M Moreno Uribe
- Department of Orthodontics, Dows Institute for Research, University of Iowa, Iowa City, IA, USA
| | | | | | | | | |
Collapse
|
6
|
Clarkson MD. Representation of anatomy in online atlases and databases: a survey and collection of patterns for interface design. BMC DEVELOPMENTAL BIOLOGY 2016; 16:18. [PMID: 27206491 PMCID: PMC4875762 DOI: 10.1186/s12861-016-0116-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND A large number of online atlases and databases have been developed to mange the rapidly growing amount of data describing embryogenesis. As these community resources continue to evolve, it is important to understand how representations of anatomy can facilitate the sharing and integration of data. In addition, attention to the design of the interfaces is critical to make online resources useful and usable. RESULTS I first present a survey of online atlases and gene expression resources for model organisms, with a focus on methods of semantic and spatial representation of anatomy. A total of 14 anatomical atlases and 21 gene expression resources are included. This survey demonstrates how choices in semantic representation, in the form of ontologies, can enhance interface search functions and provide links between relevant information. This survey also reviews methods for spatially representing anatomy in online resources. I then provide a collection of patterns for interface design based on the atlases and databases surveyed. These patterns include methods for displaying graphics, integrating semantic and spatial representations, organizing information, and querying databases to find genes expressed in anatomical structures. CONCLUSIONS This collection of patterns for interface design will assist biologists and software developers in planning the interfaces of new atlases and databases or enhancing existing ones. They also show the benefits of standardizing semantic and spatial representations of anatomy by demonstrating how interfaces can use standardization to provide enhanced functionality.
Collapse
Affiliation(s)
- Melissa D Clarkson
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Abstract
PURPOSE This paper presents a deformable mouse atlas of the laboratory mouse anatomy. This atlas is fully articulated and can be positioned into arbitrary body poses. The atlas can also adapt body weight by changing body length and fat amount. PROCEDURES A training set of 103 micro-CT images was used to construct the atlas. A cage-based deformation method was applied to realize the articulated pose change. The weight-related body deformation was learned from the training set using a linear regression method. A conditional Gaussian model and thin-plate spline mapping were used to deform the internal organs following the changes of pose and weight. RESULTS The atlas was deformed into different body poses and weights, and the deformation results were more realistic compared to the results achieved with other mouse atlases. The organ weights of this atlas matched well with the measurements of real mouse organ weights. This atlas can also be converted into voxelized images with labeled organs, pseudo CT images and tetrahedral mesh for phantom studies. CONCLUSIONS With the unique ability of articulated pose and weight changes, the deformable laboratory mouse atlas can become a valuable tool for preclinical image analysis.
Collapse
|
8
|
The pattern of congenital heart defects arising from reduced Tbx5 expression is altered in a Down syndrome mouse model. BMC DEVELOPMENTAL BIOLOGY 2015. [PMID: 26208718 PMCID: PMC4514943 DOI: 10.1186/s12861-015-0080-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Nearly half of all individuals with Down Syndrome (DS) have some type of congenital heart defect (CHD), suggesting that DS sensitizes to CHD but does not cause it. We used a common mouse model of DS, the Ts65Dn mouse, to study the contribution of Tbx5, a known modifier of CHD, to heart defects on a trisomic backgroun. Mice that were heterozygous for a Tbx5 null allele were crossed with Ts65Dn mice. Thoraxes of progeny were fixed in 10% formalin, embedded in paraffin, and sectioned for analysis of CHD. Gene expression in embryonic hearts was examined by quantitative PCR and in situ hybridization. A TBX5 DNA binding site was verified by luciferase assays. METHODS Mice that were heterozygous for a Tbx5 null allele were crossed with Ts65Dn mice. Thoraxes of progeny were fixed in 10% formalin, embedded in paraffin, and sectioned for analysis of CHD. Gene expression in embryonic hearts was examined by quantitative PCR and in situ hybridization. A TBX5 DNA binding site was verified by luciferase assays. RESULTS We crossed mice that were heterozygous for a Tbx5 null allele with Ts65Dn mice. Mice that were trisomic and carried the Tbx5 mutation (Ts65Dn;Tbx5 (+/-) ) had a significantly increased incidence of overriding aorta compared to their euploid littermates. Ts65Dn;Tbx5 (+/-) mice also showed reduced expression of Pitx2, a molecular marker for the left atrium. Transcript levels of the trisomic Adamts1 gene were decreased in Tbx5 (+/-) mice compared to their euploid littermates. Evidence of a valid binding site for TBX5 upstream of the trisomic Adamts1 locus was also shown. CONCLUSION Haploinsufficiency of Tbx5 and trisomy affects alignment of the aorta and this effect may stem from deviations from normal left-right patterning in the heart. We have unveiled a previously unknown interaction between the Tbx5 gene and trisomy, suggesting a connection between Tbx5 and trisomic genes important during heart development.
Collapse
|
9
|
Dsilva CJ, Lim B, Lu H, Singer A, Kevrekidis IG, Shvartsman SY. Temporal ordering and registration of images in studies of developmental dynamics. Development 2015; 142:1717-24. [PMID: 25834019 DOI: 10.1242/dev.119396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/04/2015] [Indexed: 01/24/2023]
Abstract
Progress of development is commonly reconstructed from imaging snapshots of chemical or mechanical processes in fixed tissues. As a first step in these reconstructions, snapshots must be spatially registered and ordered in time. Currently, image registration and ordering are often done manually, requiring a significant amount of expertise with a specific system. However, as the sizes of imaging data sets grow, these tasks become increasingly difficult, especially when the images are noisy and the developmental changes being examined are subtle. To address these challenges, we present an automated approach to simultaneously register and temporally order imaging data sets. The approach is based on vector diffusion maps, a manifold learning technique that does not require a priori knowledge of image features or a parametric model of the developmental dynamics. We illustrate this approach by registering and ordering data from imaging studies of pattern formation and morphogenesis in three model systems. We also provide software to aid in the application of our methodology to other experimental data sets.
Collapse
Affiliation(s)
- Carmeline J Dsilva
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA These authors contributed equally to this work
| | - Bomyi Lim
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA These authors contributed equally to this work
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amit Singer
- Department of Mathematics, Princeton University, Princeton, NJ 08544, USA Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
| | - Ioannis G Kevrekidis
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Wick HC, Drabkin H, Ngu H, Sackman M, Fournier C, Haggett J, Blake JA, Bianchi DW, Slonim DK. DFLAT: functional annotation for human development. BMC Bioinformatics 2014; 15:45. [PMID: 24507166 PMCID: PMC3928322 DOI: 10.1186/1471-2105-15-45] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/28/2014] [Indexed: 11/25/2022] Open
Abstract
Background Recent increases in genomic studies of the developing human fetus and neonate have led to a need for widespread characterization of the functional roles of genes at different developmental stages. The Gene Ontology (GO), a valuable and widely-used resource for characterizing gene function, offers perhaps the most suitable functional annotation system for this purpose. However, due in part to the difficulty of studying molecular genetic effects in humans, even the current collection of comprehensive GO annotations for human genes and gene products often lacks adequate developmental context for scientists wishing to study gene function in the human fetus. Description The Developmental FunctionaL Annotation at Tufts (DFLAT) project aims to improve the quality of analyses of fetal gene expression and regulation by curating human fetal gene functions using both manual and semi-automated GO procedures. Eligible annotations are then contributed to the GO database and included in GO releases of human data. DFLAT has produced a considerable body of functional annotation that we demonstrate provides valuable information about developmental genomics. A collection of gene sets (genes implicated in the same function or biological process), made by combining existing GO annotations with the 13,344 new DFLAT annotations, is available for use in novel analyses. Gene set analyses of expression in several data sets, including amniotic fluid RNA from fetuses with trisomies 21 and 18, umbilical cord blood, and blood from newborns with bronchopulmonary dysplasia, were conducted both with and without the DFLAT annotation. Conclusions Functional analysis of expression data using the DFLAT annotation increases the number of implicated gene sets, reflecting the DFLAT’s improved representation of current knowledge. Blinded literature review supports the validity of newly significant findings obtained with the DFLAT annotations. Newly implicated significant gene sets also suggest specific hypotheses for future research. Overall, the DFLAT project contributes new functional annotation and gene sets likely to enhance our ability to interpret genomic studies of human fetal and neonatal development.
Collapse
Affiliation(s)
- Heather C Wick
- Department of Computer Science, Tufts University, 155 College Ave, Medford, MA 02155, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|