1
|
Weirich S, Jeltsch A. Specificity Analysis of Protein Methyltransferases and Discovery of Novel Substrates Using SPOT Peptide Arrays. Methods Mol Biol 2022; 2529:313-325. [PMID: 35733022 DOI: 10.1007/978-1-0716-2481-4_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Posttranslational methylation of amino acid side chains in proteins mainly occurs on lysine, arginine, glutamine, and histidine residues. It is introduced by different protein methyltransferases (PMTs) and regulates many aspects of protein function including stability, activity, localization, and protein/protein interactions. Although the biological effects of PMTs are mediated by their methylation substrates, the full substrate spectrum of most PMTs is not known. For many PMTs, their activity on a particular potential substrate depends, among other factors, on the peptide sequence containing the target residue for methylation. In this protocol, we describe the application of SPOT peptide arrays to investigate the substrate specificity of PMTs and identify novel substrates. Methylation of SPOT peptide arrays makes it possible to study the methylation of many different peptides in one experiment at reasonable costs and thereby provides detailed information about the specificity of the PMT under investigation. In these experiments, a known substrate sequence is used as template to design a SPOT peptide array containing peptides with single amino acid exchanges at all positions of the sequence. Methylation of the array with the PMT provides detailed preferences for each amino acid at each position in the substrate sequence, yielding a substrate sequence specificity profile. This information can then be used to identify novel potential PMT substrates by in silico data base searches. Methylation of novel substrate candidates can be validated in SPOT arrays at peptide level, followed by validation at protein level in vitro and in cells.
Collapse
Affiliation(s)
- Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
2
|
Identification and characterization of a large family of superbinding bacterial SH2 domains. Nat Commun 2018; 9:4549. [PMID: 30382091 PMCID: PMC6208348 DOI: 10.1038/s41467-018-06943-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/02/2018] [Indexed: 11/27/2022] Open
Abstract
Src homology 2 (SH2) domains play a critical role in signal transduction in mammalian cells by binding to phosphorylated Tyr (pTyr). Apart from a few isolated cases in viruses, no functional SH2 domain has been identified to date in prokaryotes. Here we identify 93 SH2 domains from Legionella that are distinct in sequence and specificity from mammalian SH2 domains. The bacterial SH2 domains are not only capable of binding proteins or peptides in a Tyr phosphorylation-dependent manner, some bind pTyr itself with micromolar affinities, a property not observed for mammalian SH2 domains. The Legionella SH2 domains feature the SH2 fold and a pTyr-binding pocket, but lack a specificity pocket found in a typical mammalian SH2 domain for recognition of sequences flanking the pTyr residue. Our work expands the boundary of phosphotyrosine signalling to prokaryotes, suggesting that some bacterial effector proteins have acquired pTyr-superbinding characteristics to facilitate bacterium-host interactions. SH2 domains bind to tyrosine-phosphorylated proteins and play crucial roles in signal transduction in mammalian cells. Here, Kaneko et al. identify a large family of SH2 domains in the bacterial pathogen Legionella that bind to mammalian phosphorylated proteins, in some cases with very high affinity.
Collapse
|
3
|
Binding determinants in the interplay between porcine aminopeptidase N and enterotoxigenic Escherichia coli F4 fimbriae. Vet Res 2018; 49:23. [PMID: 29482635 PMCID: PMC5828407 DOI: 10.1186/s13567-018-0519-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/06/2018] [Indexed: 11/25/2022] Open
Abstract
The binding of F4+ enterotoxigenic Escherichia coli (ETEC) and the specific receptor on porcine intestinal epithelial cells is the initial step in F4+ ETEC infection. Porcine aminopeptidase N (APN) is a newly discovered receptor for F4 fimbriae that binds directly to FaeG adhesin, which is the major subunit of the F4 fimbriae variants F4ab, F4ac, and F4ad. We used overlapping peptide assays to map the APN-FaeG binding sites, which has facilitated in the identifying the APN-binding amino acids that are located in the same region of FaeG variants, thereby limiting the major binding regions of APN to 13 peptides. To determine the core sequence motif, a panel of FaeG peptides with point mutations and FaeG mutants were constructed. Pull-down and binding reactivity assays using piglet intestines determined that the amino acids G159 of F4ab, N209 and L212 of F4ac, and A200 of F4ad were the critical residues for APN binding of FaeG. We further show using ELISA and confocal microscopy assay that amino acids 553–568, and 652–670 of the APN comprise the linear epitope for FaeG binding in all three F4 fimbriae variants.
Collapse
|
4
|
Liu P, Souma T, Wei AZS, Xie X, Luo X, Jin J. Personalized Peptide Arrays for Detection of HLA Alloantibodies in Organ Transplantation. J Vis Exp 2017. [PMID: 28930983 DOI: 10.3791/56278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In organ transplantation, the function and longevity of the graft critically rely on the success of controlling immunological rejection reactivity against human leukocyte antigens (HLA). Histocompatibility guidelines are based on laboratory tests of anti-HLA immunity, which presents either as pre-existing or de novo generated HLA antibodies that constitute a major transplantation barrier. Current tests are built on a single-antigen beads (SAB) platform using a fixed set of ~100 preselected recombinant HLA antigens to probe transplant sera. However, in humans there exist a far greater variety of HLA types, with no two individuals other than identical twins who can share the same combination of HLA sequences. While advanced technologies for HLA typing and direct sequencing can precisely capture any mismatches in DNA sequence between a donor's and recipient's HLA, the SAB assay, due to its limited variety in sequence representation, is unable to precisely detect alloantibodies specifically against the donor HLA mismatches. We sought to develop a complementary method using a different technology to detect and characterize anti-donor HLA antibodies on a personalized basis. The screening tool is a custom peptide array of donor HLA-derived sequences for probing post-transplant sera of the organ recipient to assess the risk for antibody-mediated rejection. On a single array for one donor-recipient pair, up to 600 unique peptides are made based on the donor's HLA protein sequences, each peptide carrying at least one mismatched residue in a 15-amino acid sequence. In our pilot experiments to compare antigen patterns for pre- and post-transplant sera on these arrays, we were able to detect anti-HLA signals with the resolution that also allowed us to pinpoint the immune epitopes involved. These personalized antigen arrays allow high-resolution detection of donor-specific HLA epitopes in organ transplantation.
Collapse
Affiliation(s)
- Pan Liu
- Division of Nephrology and Hypertension, and the Center for Kidney Research and Therapeutics at the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine
| | - Tomokazu Souma
- Division of Nephrology and Hypertension, and the Center for Kidney Research and Therapeutics at the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine
| | - Andrew Zu-Sern Wei
- Division of Nephrology and Hypertension, and the Center for Kidney Research and Therapeutics at the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine
| | - Xueying Xie
- School of Biological Sciences and Medical Engineering, Southeast University
| | - Xunrong Luo
- Surgery-Organ Transplantation, Northwestern University Feinberg School of Medicine
| | - Jing Jin
- Division of Nephrology and Hypertension, and the Center for Kidney Research and Therapeutics at the Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine;
| |
Collapse
|
5
|
A Novel Method for Anti-HLA Antibody Detection Using Personalized Peptide Arrays. Transplant Direct 2016; 2:e109. [PMID: 27826602 PMCID: PMC5096436 DOI: 10.1097/txd.0000000000000619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/11/2016] [Indexed: 01/02/2023] Open
Abstract
Background HLA mismatches are the primary cause of alloantibody-mediated rejection (AMR) in organ transplantation. To delineate antigenic and immunogenic potentials among individual HLA mismatches, information regarding antibody specificity at the epitope level, instead of the allelic level, is needed. Methods This study explores a direct screening method for HLA linear epitopes in kidney transplant patients. We custom synthesized a large panel of 15-residue HLA peptides in an array format and measured alloantibody reactivity to these peptides from the sera of post and/or pretransplant patients. Two design concepts for the arrays were followed: a standard array of a fixed panel of peptides or personalized arrays. The standard array contains 420 peptides derived from a predetermined set of HLA-DQ allelic antigens based on templates also used in the single-antigen beads assay. Results The array detected distinct antiserum patterns among transplant subjects and revealed epitope levels of specificity largely in accordance with the single-antigen results. Two personalized arrays that each included donor-derived peptides of HLA-A, -B, -C, -DQ, and -DR sequences were separately designed for 2 transplant subjects. The personalized arrays detected de novo antibodies following transplantation. The new method also showed superior sensitivity to a single-antigen assay in one of the cases whose pathological diagnosis of AMR occurred before single-antigen assay could detect antibodies. Conclusions This pilot study proved the feasibility of using personalized peptide arrays to achieve detection of alloantibodies for linear HLA epitopes associated with distinct donor-recipient mismatches. Single or multiple reactive epitopes may occur on an individual HLA molecule, and donor-specific HLA-DQ-reactivity among 5 kidney transplant subjects revealed patterns of shared epitopes.
Collapse
|
6
|
Delconte RB, Kolesnik TB, Dagley LF, Rautela J, Shi W, Putz EM, Stannard K, Zhang JG, Teh C, Firth M, Ushiki T, Andoniou CE, Degli-Esposti MA, Sharp PP, Sanvitale CE, Infusini G, Liau NPD, Linossi EM, Burns CJ, Carotta S, Gray DHD, Seillet C, Hutchinson DS, Belz GT, Webb AI, Alexander WS, Li SS, Bullock AN, Babon JJ, Smyth MJ, Nicholson SE, Huntington ND. CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat Immunol 2016; 17:816-24. [PMID: 27213690 DOI: 10.1038/ni.3470] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/27/2016] [Indexed: 12/14/2022]
Abstract
The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish(-/-) mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell-mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function.
Collapse
Affiliation(s)
- Rebecca B Delconte
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Tatiana B Kolesnik
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Jai Rautela
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Wei Shi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Eva M Putz
- Immunology in Cancer and Infection Laboratory QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kimberley Stannard
- Immunology in Cancer and Infection Laboratory QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jian-Guo Zhang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Charis Teh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Matt Firth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Takashi Ushiki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Christopher E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia and Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Mariapia A Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia and Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Phillip P Sharp
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | | | - Giuseppe Infusini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Nicholas P D Liau
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Edmond M Linossi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Christopher J Burns
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Sebastian Carotta
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Cyril Seillet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Dana S Hutchinson
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Shawn S Li
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Alex N Bullock
- Structural Genomics Consortium (SGC), University of Oxford, Oxford, UK
| | - Jeffery J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Bera S, Raghuram V, Mikhaylova M, Kreutz MR. A plasmid-based expression system to study protein-protein interactions at the Golgi in vivo. Anal Biochem 2016; 502:50-52. [PMID: 26973219 DOI: 10.1016/j.ab.2016.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/20/2016] [Accepted: 02/24/2016] [Indexed: 01/23/2023]
Abstract
There is still an unmet need for simple methods to verify, visualize, and confirm protein-protein interactions in vivo. Here we describe a plasmid-based system to study such interactions. The system is based on the transmembrane domain (TMD) of the EF-hand Ca(2+) sensor protein calneuron-2. We show that fusion of 28 amino acids that include the TMD of calneuron-2 to proteins of interest results in prominent localization on the cytoplasmic side of the Golgi. The recruitment of binding partners to the protein of interest fused to this sequence can then be easily visualized by fluorescent tags.
Collapse
Affiliation(s)
- Sujoy Bera
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Vijeta Raghuram
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany; CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Marina Mikhaylova
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany; Emmy Noether Group "Neuronal Protein Transport", Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
8
|
Kudithipudi S, Kusevic D, Weirich S, Jeltsch A. Specificity analysis of protein lysine methyltransferases using SPOT peptide arrays. J Vis Exp 2014:e52203. [PMID: 25489813 DOI: 10.3791/52203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Lysine methylation is an emerging post-translation modification and it has been identified on several histone and non-histone proteins, where it plays crucial roles in cell development and many diseases. Approximately 5,000 lysine methylation sites were identified on different proteins, which are set by few dozens of protein lysine methyltransferases. This suggests that each PKMT methylates multiple proteins, however till now only one or two substrates have been identified for several of these enzymes. To approach this problem, we have introduced peptide array based substrate specificity analyses of PKMTs. Peptide arrays are powerful tools to characterize the specificity of PKMTs because methylation of several substrates with different sequences can be tested on one array. We synthesized peptide arrays on cellulose membrane using an Intavis SPOT synthesizer and analyzed the specificity of various PKMTs. Based on the results, for several of these enzymes, novel substrates could be identified. For example, for NSD1 by employing peptide arrays, we showed that it methylates K44 of H4 instead of the reported H4K20 and in addition H1.5K168 is the highly preferred substrate over the previously known H3K36. Hence, peptide arrays are powerful tools to biochemically characterize the PKMTs.
Collapse
|
9
|
Ahn SB, Mohamedali A, Anand S, Cheruku HR, Birch D, Sowmya G, Cantor D, Ranganathan S, Inglis DW, Frank R, Agrez M, Nice EC, Baker MS. Characterization of the Interaction between Heterodimeric αvβ6 Integrin and Urokinase Plasminogen Activator Receptor (uPAR) Using Functional Proteomics. J Proteome Res 2014; 13:5956-64. [DOI: 10.1021/pr500849x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ronald Frank
- Department
of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffen
Strasse, 738124 Braunschweig, Germany
| | - Michael Agrez
- Division
of Surgery, John Hunter Hospital, Newcastle, NSW 2310, Australia
| | - Edouard C. Nice
- Department
of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | | |
Collapse
|
10
|
Xiao X, Mruk DD, Cheng CY. c-Yes regulates cell adhesion at the apical ectoplasmic specialization-blood-testis barrier axis via its effects on protein recruitment and distribution. Am J Physiol Endocrinol Metab 2013; 304:E145-59. [PMID: 23169788 PMCID: PMC3543571 DOI: 10.1152/ajpendo.00422.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
During spermatogenesis, extensive restructuring takes place at the cell-cell interface since developing germ cells migrate progressively from the basal to the adluminal compartment of the seminiferous epithelium. Since germ cells per se are not motile cells, their movement relies almost exclusively on the Sertoli cell. Nonetheless, extensive exchanges in signaling take place between these cells in the seminiferous epithelium. c-Yes, a nonreceptor protein tyrosine kinase belonging to the Src family kinases (SFKs) and a crucial signaling protein, was recently shown to be upregulated at the Sertoli cell-cell interface at the blood-testis barrier (BTB) at stages VIII-IX of the seminiferous epithelial cycle of spermatogenesis. It was also highly expressed at the Sertoli cell-spermatid interface known as apical ectoplasmic specialization (apical ES) at stage V to early stage VIII of the epithelial cycle during spermiogenesis. Herein, it was shown that the knockdown of c-Yes by RNAi in vitro and in vivo affected both Sertoli cell adhesion at the BTB and spermatid adhesion at the apical ES, causing a disruption of the Sertoli cell tight junction-permeability barrier function, germ cell loss from the seminiferous epithelium, and also a loss of spermatid polarity. These effects were shown to be mediated by changes in distribution and/or localization of adhesion proteins at the BTB (e.g., occludin, N-cadherin) and at the apical ES (e.g., nectin-3) and possibly the result of changes in the underlying actin filaments at the BTB and the apical ES. These findings implicate that c-Yes is a likely target of male contraceptive research.
Collapse
Affiliation(s)
- Xiang Xiao
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | | | | |
Collapse
|
11
|
Kubrycht J, Sigler K, Souček P. Virtual interactomics of proteins from biochemical standpoint. Mol Biol Int 2012; 2012:976385. [PMID: 22928109 PMCID: PMC3423939 DOI: 10.1155/2012/976385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022] Open
Abstract
Virtual interactomics represents a rapidly developing scientific area on the boundary line of bioinformatics and interactomics. Protein-related virtual interactomics then comprises instrumental tools for prediction, simulation, and networking of the majority of interactions important for structural and individual reproduction, differentiation, recognition, signaling, regulation, and metabolic pathways of cells and organisms. Here, we describe the main areas of virtual protein interactomics, that is, structurally based comparative analysis and prediction of functionally important interacting sites, mimotope-assisted and combined epitope prediction, molecular (protein) docking studies, and investigation of protein interaction networks. Detailed information about some interesting methodological approaches and online accessible programs or databases is displayed in our tables. Considerable part of the text deals with the searches for common conserved or functionally convergent protein regions and subgraphs of conserved interaction networks, new outstanding trends and clinically interesting results. In agreement with the presented data and relationships, virtual interactomic tools improve our scientific knowledge, help us to formulate working hypotheses, and they frequently also mediate variously important in silico simulations.
Collapse
Affiliation(s)
- Jaroslav Kubrycht
- Department of Physiology, Second Medical School, Charles University, 150 00 Prague, Czech Republic
| | - Karel Sigler
- Laboratory of Cell Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic
| |
Collapse
|
12
|
Namanja AT, Li YJ, Su Y, Wong S, Lu J, Colson LT, Wu C, Li SSC, Chen Y. Insights into high affinity small ubiquitin-like modifier (SUMO) recognition by SUMO-interacting motifs (SIMs) revealed by a combination of NMR and peptide array analysis. J Biol Chem 2011; 287:3231-40. [PMID: 22147707 DOI: 10.1074/jbc.m111.293118] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small ubiquitin-like modifiers (SUMOs) regulate many essential cellular functions. Only one type of SUMO-interacting motif (SIM) has been identified that can extend the β-sheet of SUMO as either a parallel or an antiparallel strand. The molecular determinants of the bound orientation and paralogue specificity of a SIM are unclear. To address this question, we have conducted structural studies of SUMO1 in complex with a SUMO1-specific SIM that binds to SUMO1 with high affinity without post-translational modifications using nuclear magnetic resonance methods. In addition, the SIM sequence requirements have been investigated by peptide arrays in comparison with another high affinity SIM that binds in the opposing orientation. We found that antiparallel binding SIMs tolerate more diverse sequences, whereas the parallel binding SIMs prefer the more strict sequences consisting of (I/V)DLT that have a preference in high affinity SUMO2 and -3 binding. Comparison of two high affinity SUMO1-binding SIMs that bind in opposing orientations has revealed common SUMO1-specific interactions needed for high affinity binding. This study has significantly advanced our understanding of the molecular determinants underlining SUMO-SIM recognition.
Collapse
Affiliation(s)
- Andrew T Namanja
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Simister PC, Schaper F, O'Reilly N, McGowan S, Feller SM. Self-organization and regulation of intrinsically disordered proteins with folded N-termini. PLoS Biol 2011; 9:e1000591. [PMID: 21347241 PMCID: PMC3039663 DOI: 10.1371/journal.pbio.1000591] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
How do mostly disordered proteins coordinate the specific assembly of very large signal transduction protein complexes? A newly emerging hypothesis may provide some clues towards a molecular mechanism.
Collapse
Affiliation(s)
- Philip C. Simister
- Cell Signalling Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Fred Schaper
- Department of Systems Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Nicola O'Reilly
- Peptide Synthesis Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Simon McGowan
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Stephan M. Feller
- Cell Signalling Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Voigt P, Reinberg D. Histone tails: ideal motifs for probing epigenetics through chemical biology approaches. Chembiochem 2011; 12:236-52. [PMID: 21243712 PMCID: PMC3760146 DOI: 10.1002/cbic.201000493] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Indexed: 01/19/2023]
Abstract
Post-translational modifications (PTMs) on histone proteins have emerged as a central theme in the regulation of gene expression and other chromatin-associated processes. The discovery that certain protein domains can recognize acetylated and methylated lysine residues of histones has spurred efforts to uncover and characterize histone PTM-binding proteins. In this task, chromatin biology has strongly benefited from synthetic approaches stemming from chemical biology. Peptide-based techniques have been instrumental in identifying histone mark-binding proteins and analyzing their binding specificities. To explore how histone PTMs carry out their function in the context of chromatin, reconstituted systems based on recombinant histones carrying defined modifications are increasingly being used. They constitute promising tools to analyze mechanistic aspects of histone PTMs, including their role in transcription and their transmission in replication. In this review, we present strategies that have been used successfully to investigate the role of histone modifications, concepts that have emerged from their application, and their potential to contribute to current developments in the field.
Collapse
Affiliation(s)
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University School of Medicine, Department of Biochemistry, 522 First Avenue, New York, NY 10016, USA
| |
Collapse
|
15
|
Holland LZ, Short S. Alternative splicing in development and function of chordate endocrine systems: a focus on Pax genes. Integr Comp Biol 2010; 50:22-34. [PMID: 21558185 DOI: 10.1093/icb/icq048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genome sequencing has facilitated an understanding of gene networks but has also shown that they are only a small part of the answer to the question of how genes translate into a functional organism. Much of the answer lies in epigenetics-heritable traits not directly encoded by the genome. One such phenomenon is alternative splicing, which affects over 75% of protein coding genes and greatly amplifies the number of proteins. Although it was postulated that alternative splicing and gene duplication are inversely proportional and, therefore, have similar effects on the size of the proteome, for ancient duplications such as occurred in the Pax family of transcription factors, that is not necessarily so. The importance of alternative splicing in development and physiology is only just coming to light. However, several techniques for studying isoform functions both in vitro and in vivo have been recently developed. As examples of what is known and what is yet to be discovered, this review focuses on the evolution and roles of the Pax family of transcription factors in development and on alternative splicing of endocrine genes and the factors that regulate them.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| | | |
Collapse
|
16
|
Kaneko T, Huang H, Zhao B, Li L, Liu H, Voss CK, Wu C, Schiller MR, Li SSC. Loops govern SH2 domain specificity by controlling access to binding pockets. Sci Signal 2010; 3:ra34. [PMID: 20442417 DOI: 10.1126/scisignal.2000796] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cellular functions require specific protein-protein interactions that are often mediated by modular domains that use binding pockets to engage particular sequence motifs in their partners. Yet, how different members of a domain family select for distinct sequence motifs is not fully understood. The human genome encodes 120 Src homology 2 (SH2) domains (in 110 proteins), which mediate protein-protein interactions by binding to proteins with diverse phosphotyrosine (pTyr)-containing sequences. The structure of the SH2 domain of BRDG1 bound to a peptide revealed a binding pocket that was blocked by a loop residue in most other SH2 domains. Analysis of 63 SH2 domain structures suggested that the SH2 domains contain three binding pockets, which exhibit selectivity for the three positions after the pTyr in a peptide, and that SH2 domain loops defined the accessibility and shape of these pockets. Despite sequence variability in the loops, we identified conserved structural features in the loops of SH2 domains responsible for controlling access to these surface pockets. We engineered new loops in an SH2 domain that altered specificity as predicted. Thus, selective blockage of binding subsites or pockets by surface loops provides a molecular basis by which the diverse modes of ligand recognition by the SH2 domain may have evolved and provides a framework for engineering SH2 domains and designing SH2-specific inhibitors.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | | | | | | | |
Collapse
|