1
|
Yang Z, Deng J, Li D, Sun T, Xia L, Xu W, Zeng L, Jiang H, Yang X. Analysis of Population Structure and Differentially Selected Regions in Guangxi Native Breeds by Restriction Site Associated with DNA Sequencing. G3 (BETHESDA, MD.) 2020; 10:379-386. [PMID: 31744899 PMCID: PMC6945025 DOI: 10.1534/g3.119.400827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
Guangxi indigenous chicken breeds play a very important role in promoting the high-quality development of the broiler industry in China. However, studies on genomic information of Guangxi indigenous chicken to date remain poorly explored. To decipher the population genetic structure and differentially selected regions (DSRs) in Guangxi indigenous chickens, we dug into numerous SNPs from seven Guangxi native chickens (GX) by employing the restriction site associated with DNA sequencing (RAD-seq) technology. Another three breeds, Cobb, White Leghorn, and Chahua (CH) chicken, were used as a control. After quality control, a total of 185,117 autosomal SNPs were kept for further analysis. The results showed a significant difference in population structure, and the control breeds were distinctly separate from the Guangxi native breeds, which was also strongly supported by the phylogenetic tree. Distribution of FST indicated that there were three SNPs with big genetic differentiation (FST value all reach to 0. 9427) in GX vs. CH group, which were located on chr1-96,859,720,chr4-86,139,601, and chr12-8,128,322, respectively. Besides, we identified 717 DSRs associated with 882 genes in GX vs. Cobb group, 769 DSRs with 476 genes in GX vs. Leghorn group, and 556 DSRs with 779 genes in GX vs. CH group. GO enrichment showed that there were two significant terms, namely GPI-linked ephrin receptor activity and BMP receptor binding, which were enriched in GX vs. Leghorn group. In conclusion, this study suggests that Guangxi native chickens have a great differentiation with Cobb and Leghorn. Our findings would be beneficial to fully evaluate the genomic information on Guangxi native chicken and facilitate the application of these resources in chicken breeding.
Collapse
Affiliation(s)
- Zhuliang Yang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China,
| | - Jixian Deng
- Guangxi Institute of Animal Science, Nanning, 530001, China, and
| | - Dongfeng Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tiantian Sun
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Li Xia
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Wenwen Xu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Linghu Zeng
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hesheng Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China,
| |
Collapse
|
3
|
Erdem A, Eksin E. Magnetic beads assay based on Zip nucleic acid for electrochemical detection of Factor V Leiden mutation. Int J Biol Macromol 2018; 125:839-846. [PMID: 30552928 DOI: 10.1016/j.ijbiomac.2018.12.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/11/2023]
Abstract
Single nucleotide polymorphisms (SNPs) are the most common type of genetic variation among people. Development of reliable methods for the detection of SNP is crucial in aspects of molecular diagnosis and personalized medicine. In our study, a genomagnetic assay in combination with zip nucleic acid (ZNA) for electrochemical detection of SNP related to Factor V Leiden mutation. For the first time in the literature, a new generation nucleic acid; ZNA was applied herein for electrochemical monitoring of nucleic acid hybridization. Streptavidin coated magnetic beads (MBs) were used for preparation of samples containing ZNA-DNA hybrid and accordingly, the guanine signal was measured as a response of hybridization related to Factor V Leiden mutation by carbon nanofibers (CNF) modified screen printed electrodes (SPE) and multi-channel screen printed array of electrodes (CNF-MULTI SPEx8). The detection limit (DL) was found to be 3.79 μg/mL (376 nM) and, 11.63 μg/mL (1.624 μM), respectively by CNF-SPE and CNF-MULTI SPEx8. The selectivity of ZNA probe to mutation-free DNA sequences was also investigated in contrast to DNA probe. The applicability of ZNA based magnetic beads assay to sequence selective hybridization related to Factor V Leiden was also tested in synthetic PCR samples.
Collapse
Affiliation(s)
- Arzum Erdem
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Bornova, Izmir 35100, Turkey; Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, Bornova, Izmir 35100, Turkey.
| | - Ece Eksin
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Bornova, Izmir 35100, Turkey; Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, Bornova, Izmir 35100, Turkey
| |
Collapse
|
4
|
Sanromán-Iglesias M, Lawrie CH, Schäfer T, Grzelczak M, Liz-Marzán LM. Sensitivity Limit of Nanoparticle Biosensors in the Discrimination of Single Nucleotide Polymorphism. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- María Sanromán-Iglesias
- CIC biomaGUNE, Paseo de Miramón
182, 20009 Donostia-San
Sebastián, Spain
- Molecular
Oncology Group, Biodonostia Research Institute, 20014 Donostia-San
Sebastián, Spain
| | - Charles H. Lawrie
- Molecular
Oncology Group, Biodonostia Research Institute, 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Thomas Schäfer
- Polymat, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Marek Grzelczak
- CIC biomaGUNE, Paseo de Miramón
182, 20009 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20009 Donostia-San
Sebastián, Spain
| | - Luis M. Liz-Marzán
- CIC biomaGUNE, Paseo de Miramón
182, 20009 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20009 Donostia-San
Sebastián, Spain
| |
Collapse
|
5
|
Okamoto K, Tsunematsu R, Tahira T, Sonoda K, Asanoma K, Yagi H, Yoneda T, Hayashi K, Wake N, Kato K. SNP55, a new functional polymorphism of MDM2-P2 promoter, contributes to allele-specific expression of MDM2 in endometrial cancers. BMC MEDICAL GENETICS 2015; 16:67. [PMID: 26293665 PMCID: PMC4593204 DOI: 10.1186/s12881-015-0216-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 08/13/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND The functional single nucleotide polymorphism (SNP) in the MDM2 promoter region, SNP309, is known to be associated with various diseases, particularly cancer. Although many studies have been performed to demonstrate the mechanism of allele-specific expression (ASE) on SNP309, they have only utilized in vitro techniques. It is unknown whether ASE of MDM2 is ascribed solely to SNP309, in vivo. METHODS We attempted to evaluate ASE of MDM2 in vivo using post-labeling followed by automated capillary electrophoresis under single-strand conformation polymorphism conditions. For measuring a quantitative difference, we utilized the SNPs on the exons of MDM2 as markers, the status of which was heterozygous in a large population. To address the cause of ASE beyond 20%, we confirmed sequences of both MDM2-3'UTR and promoter regions. We assessed the SNP which might be the cause of ASE using biomolecular interaction analysis and luciferase assay. RESULTS ASE beyond 20% was detected in endometrial cancers, but not in cancer-free endometria samples only when an SNP rs1690916 was used as a marker. We suspected that this ASE in endometrial cancer was caused by the sequence heterogeneity in the MDM2-P2 promoter, and found a new functional polymorphism, which we labelled SNP55. There was no difference between cancer-free endometria and endometrial cancer samples neither for SNP55 genotype frequencies nor allele frequencies, and so, SNP55 alone does not affect endometrial cancer risk. The SNP55 status affected the DNA binding affinity of transcription factor Sp1 and nuclear factor kappa-B (NFκB). Transcriptional activity of the P2 promoter containing SNP55C was suppressed by NFκB p50 homodimers, but that of SNP55T was not. Only ASE-positive endometrial cancer samples displayed nuclear localization of NFκB p50. CONCLUSIONS Our findings suggest that both the SNP55 status and the NFκB p50 activity are important in the transcriptional regulation of MDM2 in endometrial cancers.
Collapse
Affiliation(s)
- Kanako Okamoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Ryosuke Tsunematsu
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Current address: Department of Obstetrics and Gynecology, National Hospital Organization Ibusuki Medical Center, 4145, Junicho, Ibusuki, Kagoshima, 891-0498, Japan.
| | - Tomoko Tahira
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan.
| | - Kenzo Sonoda
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kazuo Asanoma
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Tomoko Yoneda
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kenshi Hayashi
- Division of Genome Analysis, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Norio Wake
- Research Center for Environmental Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|