1
|
Laitenberger O, Aspelmeier T, Staudt T, Geisler C, Munk A, Egner A. Towards Unbiased Fluorophore Counting in Superresolution Fluorescence Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:459. [PMID: 36770420 PMCID: PMC9921631 DOI: 10.3390/nano13030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
With the advent of fluorescence superresolution microscopy, nano-sized structures can be imaged with a previously unprecedented accuracy. Therefore, it is rapidly gaining importance as an analytical tool in the life sciences and beyond. However, the images obtained so far lack an absolute scale in terms of fluorophore numbers. Here, we use, for the first time, a detailed statistical model of the temporal imaging process which relies on a hidden Markov model operating on two timescales. This allows us to extract this information from the raw data without additional calibration measurements. We show this on the basis of added data from experiments on single Alexa 647 molecules as well as GSDIM/dSTORM measurements on DNA origami structures with a known number of labeling positions.
Collapse
Affiliation(s)
- Oskar Laitenberger
- Department of Optical Nanoscopy, Institut für Nanophotonik e.V., 37077 Göttingen, Germany
| | - Timo Aspelmeier
- Institute for Mathematical Stochastics, Georg-August-University of Göttingen, 37073 Göttingen, Germany
| | - Thomas Staudt
- Institute for Mathematical Stochastics, Georg-August-University of Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Claudia Geisler
- Department of Optical Nanoscopy, Institut für Nanophotonik e.V., 37077 Göttingen, Germany
| | - Axel Munk
- Institute for Mathematical Stochastics, Georg-August-University of Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Alexander Egner
- Department of Optical Nanoscopy, Institut für Nanophotonik e.V., 37077 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
2
|
Wang R, Deutsch RJ, Sunassee ED, Crouch BT, Ramanujam N. Adaptive Design of Fluorescence Imaging Systems for Custom Resolution, Fields of View, and Geometries. BME FRONTIERS 2023; 4:0005. [PMID: 37849673 PMCID: PMC10521686 DOI: 10.34133/bmef.0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/27/2022] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement: We developed a generalized computational approach to design uniform, high-intensity excitation light for low-cost, quantitative fluorescence imaging of in vitro, ex vivo, and in vivo samples with a single device. Introduction: Fluorescence imaging is a ubiquitous tool for biomedical applications. Researchers extensively modify existing systems for tissue imaging, increasing the time and effort needed for translational research and thick tissue imaging. These modifications are application-specific, requiring new designs to scale across sample types. Methods: We implemented a computational model to simulate light propagation from multiple sources. Using a global optimization algorithm and a custom cost function, we determined the spatial positioning of optical fibers to generate 2 illumination profiles. These results were implemented to image core needle biopsies, preclinical mammary tumors, or tumor-derived organoids. Samples were stained with molecular probes and imaged with uniform and nonuniform illumination. Results: Simulation results were faithfully translated to benchtop systems. We demonstrated that uniform illumination increased the reliability of intraimage analysis compared to nonuniform illumination and was concordant with traditional histological findings. The computational approach was used to optimize the illumination geometry for the purposes of imaging 3 different fluorophores through a mammary window chamber model. Illumination specifically designed for intravital tumor imaging generated higher image contrast compared to the case in which illumination originally optimized for biopsy images was used. Conclusion: We demonstrate the significance of using a computationally designed illumination for in vitro, ex vivo, and in vivo fluorescence imaging. Application-specific illumination increased the reliability of intraimage analysis and enhanced the local contrast of biological features. This approach is generalizable across light sources, biological applications, and detectors.
Collapse
Affiliation(s)
- Roujia Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Riley J. Deutsch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Brian T. Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
3
|
Practical considerations for quantitative light sheet fluorescence microscopy. Nat Methods 2022; 19:1538-1549. [PMID: 36266466 DOI: 10.1038/s41592-022-01632-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/31/2022] [Indexed: 12/25/2022]
Abstract
Fluorescence microscopy has evolved from a purely observational tool to a platform for quantitative, hypothesis-driven research. As such, the demand for faster and less phototoxic imaging modalities has spurred a rapid growth in light sheet fluorescence microscopy (LSFM). By restricting the excitation to a thin plane, LSFM reduces the overall light dose to a specimen while simultaneously improving image contrast. However, the defining characteristics of light sheet microscopes subsequently warrant unique considerations in their use for quantitative experiments. In this Perspective, we outline many of the pitfalls in LSFM that can compromise analysis and confound interpretation. Moreover, we offer guidance in addressing these caveats when possible. In doing so, we hope to provide a useful resource for life scientists seeking to adopt LSFM to quantitatively address complex biological hypotheses.
Collapse
|
4
|
Imboden S, Liu X, Lee BS, Payne MC, Hsieh CJ, Lin NYC. Investigating heterogeneities of live mesenchymal stromal cells using AI-based label-free imaging. Sci Rep 2021; 11:6728. [PMID: 33762607 PMCID: PMC7991643 DOI: 10.1038/s41598-021-85905-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells that have great potential for regenerative medicine, tissue repair, and immunotherapy. Unfortunately, the outcomes of MSC-based research and therapies can be highly inconsistent and difficult to reproduce, largely due to the inherently significant heterogeneity in MSCs, which has not been well investigated. To quantify cell heterogeneity, a standard approach is to measure marker expression on the protein level via immunochemistry assays. Performing such measurements non-invasively and at scale has remained challenging as conventional methods such as flow cytometry and immunofluorescence microscopy typically require cell fixation and laborious sample preparation. Here, we developed an artificial intelligence (AI)-based method that converts transmitted light microscopy images of MSCs into quantitative measurements of protein expression levels. By training a U-Net+ conditional generative adversarial network (cGAN) model that accurately (mean [Formula: see text] = 0.77) predicts expression of 8 MSC-specific markers, we showed that expression of surface markers provides a heterogeneity characterization that is complementary to conventional cell-level morphological analyses. Using this label-free imaging method, we also observed a multi-marker temporal-spatial fluctuation of protein distributions in live MSCs. These demonstrations suggest that our AI-based microscopy can be utilized to perform quantitative, non-invasive, single-cell, and multi-marker characterizations of heterogeneous live MSC culture. Our method provides a foundational step toward the instant integrative assessment of MSC properties, which is critical for high-throughput screening and quality control in cellular therapies.
Collapse
Affiliation(s)
- Sara Imboden
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 90095, USA.
| | - Xuanqing Liu
- Department of Computer Science, University of California, Los Angeles, 90095, USA
| | - Brandon S Lee
- Department of Bioengineering, University of California, Los Angeles, 90095, USA
| | - Marie C Payne
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 90095, USA
| | - Cho-Jui Hsieh
- Department of Computer Science, University of California, Los Angeles, 90095, USA
| | - Neil Y C Lin
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 90095, USA.,Department of Bioengineering, University of California, Los Angeles, 90095, USA.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 90095, USA
| |
Collapse
|
5
|
Duan S, Li H, Zhang Y, Yang S, Chen Y, Qiu B, Huang C, Wang J, Li J, Zhu X, Yan X. Rabl2 GTP hydrolysis licenses BBSome-mediated export to fine-tune ciliary signaling. EMBO J 2021; 40:e105499. [PMID: 33241915 PMCID: PMC7809784 DOI: 10.15252/embj.2020105499] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/04/2023] Open
Abstract
Cilia of higher animals sense various environmental stimuli. Proper ciliary signaling requires appropriate extent of BBSome-mediated export of membrane receptors across ciliary barrier transition zone (TZ) through retrograde intraflagellar transport (IFT) machinery. How the barrier passage is controlled, however, remains unknown. Here, we show that small GTPase Rabl2 functions as a molecular switch for the outward TZ passage. Rabl2-GTP enters cilia by binding to IFT-B complex. Its GTP hydrolysis enables the outward TZ passage of the BBSome and its cargos with retrograde IFT machinery, whereas its persistent association leads to their shedding from IFT-B during the passing process and consequently ciliary retention. Rabl2 deficiency or expression of a GTP-locked mutant impairs the ciliary hedgehog signaling without interfering with ciliation and respectively results in different spectrums of mouse developmental disorders. We propose that the switch role of Rabl2 ensures proper turnover of the BBSome and ciliary membrane receptors to fine-tune cilia-dependent signaling for normal embryonic development and organismic homeostasis.
Collapse
Affiliation(s)
- Shichao Duan
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Department of PathologyFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hao Li
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yirong Zhang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Suming Yang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yawen Chen
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Benhua Qiu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Cheng Huang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Juan Wang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jinsong Li
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xueliang Zhu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- School of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Xiumin Yan
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| |
Collapse
|
6
|
Racca AC, Prucca CG, Caputto BL. Fra-1 and c-Fos N-Terminal Deletion Mutants Impair Breast Tumor Cell Proliferation by Blocking Lipid Synthesis Activation. Front Oncol 2019; 9:544. [PMID: 31275861 PMCID: PMC6593343 DOI: 10.3389/fonc.2019.00544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor cells require high rates of lipid synthesis to support membrane biogenesis for their exacerbated growth. The only two proteins known that activate phospholipid synthesis are Fra-1 and c-Fos, two members of the AP-1 family of transcription factors. These proteins that are overexpressed in human breast malignant tumors increase the rate of phospholipid synthesis at the endoplasmic reticulum through a mechanism independent of their nuclear function. The aim of this study was to inhibit breast tumor cell proliferation by modulating c-Fos and Fra-1 and regulate membrane biogenesis by controlling lipid synthesis rates. The molecular mechanism by which Fra-1 and c-Fos activate phospholipid synthesis was examined. Both proteins physically associate with the rate limiting enzyme CDP-DAG synthase through their N-terminus domain and activate it through their basic domain; neither protein associates to or activates the enzyme phosphatidylinositol synthase as determined through in vitro enzymatic reactions and FRET experiments. The N-terminus domain of both proteins act as negative dominant peptides that physically associate with CDP-DAG synthase but do not activate it. Proliferation of MDA-MB231 and 4T1 cells was impaired in vitro after inducing them to proliferate in the presence of the negative dominant peptides derived from Fra-1 and c-Fos. When tumors generated in Balb/c mice with the breast tumor cell line 4T1 were treated with these negative dominant peptides, a significant reduction in tumor growth was observed. Consequently, these Fra-1 and c-Fos negative dominant peptides can be exploited as a new therapeutic strategy to impair breast tumor cell proliferation.
Collapse
Affiliation(s)
- Ana Cristina Racca
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - César Germán Prucca
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Beatriz Leonor Caputto
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
7
|
Sitia L, Ferrari R, Violatto MB, Talamini L, Dragoni L, Colombo C, Colombo L, Lupi M, Ubezio P, D’Incalci M, Morbidelli M, Salmona M, Moscatelli D, Bigini P. Fate of PLA and PCL-Based Polymeric Nanocarriers in Cellular and Animal Models of Triple-Negative Breast Cancer. Biomacromolecules 2016; 17:744-55. [DOI: 10.1021/acs.biomac.5b01422] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Leopoldo Sitia
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| | - Raffaele Ferrari
- Institute
for Chemical and Bioengineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Martina B. Violatto
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| | - Laura Talamini
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| | - Luca Dragoni
- Dipartimento
di Chimica Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, 20133 Milano, Italia
| | - Claudio Colombo
- Institute
for Chemical and Bioengineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Laura Colombo
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| | - Monica Lupi
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| | - Paolo Ubezio
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| | - Maurizio D’Incalci
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| | - Massimo Morbidelli
- Institute
for Chemical and Bioengineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Mario Salmona
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| | - Davide Moscatelli
- Dipartimento
di Chimica Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, 20133 Milano, Italia
| | - Paolo Bigini
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano, Italia
| |
Collapse
|
8
|
Lee JS, Wee TLE, Brown CM. Calibration of wide-field deconvolution microscopy for quantitative fluorescence imaging. J Biomol Tech 2014; 25:31-40. [PMID: 24688321 DOI: 10.7171/jbt.14-2501-002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deconvolution enhances contrast in fluorescence microscopy images, especially in low-contrast, high-background wide-field microscope images, improving characterization of features within the sample. Deconvolution can also be combined with other imaging modalities, such as confocal microscopy, and most software programs seek to improve resolution as well as contrast. Quantitative image analyses require instrument calibration and with deconvolution, necessitate that this process itself preserves the relative quantitative relationships between fluorescence intensities. To ensure that the quantitative nature of the data remains unaltered, deconvolution algorithms need to be tested thoroughly. This study investigated whether the deconvolution algorithms in AutoQuant X3 preserve relative quantitative intensity data. InSpeck Green calibration microspheres were prepared for imaging, z-stacks were collected using a wide-field microscope, and the images were deconvolved using the iterative deconvolution algorithms with default settings. Afterwards, the mean intensities and volumes of microspheres in the original and the deconvolved images were measured. Deconvolved data sets showed higher average microsphere intensities and smaller volumes than the original wide-field data sets. In original and deconvolved data sets, intensity means showed linear relationships with the relative microsphere intensities given by the manufacturer. Importantly, upon normalization, the trend lines were found to have similar slopes. In original and deconvolved images, the volumes of the microspheres were quite uniform for all relative microsphere intensities. We were able to show that AutoQuant X3 deconvolution software data are quantitative. In general, the protocol presented can be used to calibrate any fluorescence microscope or image processing and analysis procedure.
Collapse
Affiliation(s)
| | - Tse-Luen Erika Wee
- Physiology and ; Life Sciences Complex Advanced BioImaging Facility ABIF, McGill University, Montreal, Quebec, Canada
| | - Claire M Brown
- Physiology and ; Life Sciences Complex Advanced BioImaging Facility ABIF, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Nouar R, Devred F, Breuzard G, Peyrot V. FRET and FRAP imaging: approaches to characterise tau and stathmin interactions with microtubules in cells. Biol Cell 2013; 105:149-61. [PMID: 23312015 DOI: 10.1111/boc.201200060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/09/2013] [Indexed: 12/13/2022]
Abstract
Microtubules (MTs) are involved in many crucial processes such as cell morphogenesis, mitosis and motility. These dynamic structures resulting from the complex assembly of tubulin are tightly regulated by stabilising MT-associated proteins (MAPs) such as tau and destabilising proteins, notably stathmin. Because of their key role, these MAPs and their interactions have been extensively studied using biochemical and biophysical approaches, particularly in vitro. Nevertheless, numerous questions remain unanswered and the mechanisms of interaction between MT and these proteins are still unclear in cells. Techniques coupling cell imaging and fluorescence methods, such as Förster resonance energy transfer and fluorescence recovery after photobleaching, are excellent tools to study these interactions in situ. After describing these methods, we will present emblematic data from the literature and unpublished experimental results from our laboratory concerning the interactions between MTs, tau and stathmin in cells.
Collapse
Affiliation(s)
- Roqiya Nouar
- INSERM UMR 911, Aix-Marseille Université, CRO2, 13385, Marseille, France
| | | | | | | |
Collapse
|
10
|
Hupp S, Förtsch C, Wippel C, Ma J, Mitchell TJ, Iliev AI. Direct transmembrane interaction between actin and the pore-competent, cholesterol-dependent cytolysin pneumolysin. J Mol Biol 2012; 425:636-46. [PMID: 23219469 PMCID: PMC3659287 DOI: 10.1016/j.jmb.2012.11.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 11/19/2012] [Accepted: 11/23/2012] [Indexed: 12/02/2022]
Abstract
The eukaryotic actin cytoskeleton is an evolutionarily well-established pathogen target, as a large number of bacterial factors disturb its dynamics to alter the function of the host cells. These pathogenic factors modulate or mimic actin effector proteins or they modify actin directly, leading to an imbalance of the precisely regulated actin turnover. Here, we show that the pore-forming, cholesterol-dependent cytolysin pneumolysin (PLY), a major neurotoxin of Streptococcus pneumoniae, has the capacity to bind actin directly and to enhance actin polymerisation in vitro. In cells, the toxin co-localised with F-actin shortly after exposure, and this direct interaction was verified by Förster resonance energy transfer. PLY was capable of exerting its effect on actin through the lipid bilayer of giant unilamellar vesicles, but only when its pore competence was preserved. The dissociation constant of G-actin binding to PLY in a biochemical environment was 170–190 nM, which is indicative of a high-affinity interaction, comparable to the affinity of other intracellular actin-binding factors. Our results demonstrate the first example of a direct interaction of a pore-forming toxin with cytoskeletal components, suggesting that the cross talk between pore-forming cytolysins and cells is more complex than previously thought.
Collapse
Affiliation(s)
- Sabrina Hupp
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Centre for Experimental Biomedical Science, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Hagen N, Gao L, Tkaczyk TS. Quantitative sectioning and noise analysis for structured illumination microscopy. OPTICS EXPRESS 2012; 20:403-13. [PMID: 22274364 PMCID: PMC3336372 DOI: 10.1364/oe.20.000403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Structured illumination (SI) has long been regarded as a nonquantitative technique for obtaining sectioned microscopic images. Its lack of quantitative results has restricted the use of SI sectioning to qualitative imaging experiments, and has also limited researchers' ability to compare SI against competing sectioning methods such as confocal microscopy. We show how to modify the standard SI sectioning algorithm to make the technique quantitative, and provide formulas for calculating the noise in the sectioned images. The results indicate that, for an illumination source providing the same spatially-integrated photon flux at the object plane, and for the same effective slice thicknesses, SI sectioning can provide higher SNR images than confocal microscopy for an equivalent setup when the modulation contrast exceeds about 0.09.
Collapse
Affiliation(s)
- Nathan Hagen
- Department of Bioengineering, Rice University, Houston, Texas 77005,
USA
| | - Liang Gao
- Department of Bioengineering, Rice University, Houston, Texas 77005,
USA
| | - Tomasz S. Tkaczyk
- Department of Bioengineering, Rice University, Houston, Texas 77005,
USA
| |
Collapse
|
12
|
Simultaneous multilayer scanning and detection for multiphoton fluorescence microscopy. Sci Rep 2011; 1:149. [PMID: 22355665 PMCID: PMC3240976 DOI: 10.1038/srep00149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/25/2011] [Indexed: 11/14/2022] Open
Abstract
Fast three-(3D) imaging requires parallel optical slicing of a specimen with an efficient detection scheme. The generation of multiple localized dot-like excitation structures solves the problem of simultaneous slicing multiple specimen layers, but an efficient detection scheme is necessary. Confocal theta detection (detection at 90° to the optical axis) provides a suitable detection platform that is capable of cross-talk-free fluorescence detection from each nanodot (axial dimension ≈ 150 nm). Additionally, this technique has the unique feature of imaging a specimen at a large working distance with super-resolution capabilities. Polarization studies show distinct field structures for fixed and fluid samples, indicating a non-negligible field-dipole interaction. The realization of the proposed imaging technique will advance and diversify multiphoton fluorescence microscopy for numerous applications in nanobioimaging and optical engineering.
Collapse
|
13
|
Chan FTS, Kaminski CF, Kaminski Schierle GS. HomoFRET fluorescence anisotropy imaging as a tool to study molecular self-assembly in live cells. Chemphyschem 2010; 12:500-9. [PMID: 21344590 DOI: 10.1002/cphc.201000833] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/11/2010] [Indexed: 11/11/2022]
Abstract
Molecular self-assembly is a defining feature of numerous biological functions and dysfunctions, ranging from basic cell signalling to diseases mediated by protein aggregation. There is current demand for novel experimental methods to study molecular self-assembly in live cells, and thereby in its physiological context. Förster resonance energy transfer (FRET) between fluorophores of a single type, known as homoFRET, permits noninvasive detection and quantification of molecular clusters in live cells. It can thus provide powerful insights into the molecular physiology of living systems and disease. HomoFRET is detected by measuring the loss of fluorescence anisotropy upon excitation with polarised light. This article reviews recent key developments in homoFRET fluorescence anisotropy imaging for the detection and quantification of molecular self-assembly reactions in biological systems. A summary is given of the current state-of-the-art and case studies are presented of successful implementations, highlighting technical aspects which have to be mastered to bridge the gap between proof-of-concept experiments and biological discoveries.
Collapse
Affiliation(s)
- Fiona T S Chan
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, CB2 3RA, UK
| | | | | |
Collapse
|
14
|
Ramanujan VK, Ren S, Park S, Farkas DL. Non-invasive, Contrast-enhanced Spectral Imaging of Breast Cancer Signatures in Preclinical Animal Models In vivo. ACTA ACUST UNITED AC 2010; 1. [PMID: 21572915 DOI: 10.4172/2157-7013.1000102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report here a non-invasive multispectral imaging platform for monitoring spectral reflectance and fluorescence images from primary breast carcinoma and metastatic lymph nodes in preclinical rat model in vivo. The system is built around a monochromator light source and an acousto-optic tunable filter (AOTF) for spectral selection. Quantitative analysis of the measured reflectance profiles in the presence of a widely-used lymphazurin dye clearly demonstrates the capability of the proposed imaging platform to detect tumor-associated spectral signatures in the primary tumors as well as metastatic lymphatics. Tumor-associated changes in vascular oxygenation and interstitial fluid pressure are reasoned to be the physiological sources of the measured reflectance profiles. We also discuss the translational potential of our imaging platform in intra-operative clinical setting.
Collapse
Affiliation(s)
- V Krishnan Ramanujan
- Departments of Surgery and Biomedical Sciences, Principal Investigator, Metabolic Photonics Laboratory Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | |
Collapse
|