1
|
Hassan M, Shahzadi S, Yasir M, Chun W, Kloczkowski A. Therapeutic Implication of miRNAs as an Active Regulatory Player in the Management of Pain: A Review. Genes (Basel) 2024; 15:1003. [PMID: 39202362 PMCID: PMC11353898 DOI: 10.3390/genes15081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic pain is frequently associated with neuropathy, inflammation, or the malfunctioning of nerves. Chronic pain is associated with a significant burden of morbidity due to opioid use, associated with addiction and tolerance, and disability. MicroRNAs (miRs) are emerging therapeutic targets to treat chronic pain through the regulation of genes associated with inflammation, neuronal excitability, survival, or de-differentiation. In this review, we discuss the possible involvement of miRs in pain-related molecular pathways. miRs are known to regulate high-conviction pain genes, supporting their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
- Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH 43205, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
3
|
Blum K, Thanos PK, Badgaiyan RD, Febo M, Oscar-Berman M, Fratantonio J, Demotrovics Z, Gold MS. Neurogenetics and gene therapy for reward deficiency syndrome: are we going to the Promised Land? Expert Opin Biol Ther 2015; 15:973-85. [PMID: 25974314 DOI: 10.1517/14712598.2015.1045871] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Addiction is a substantial health issue with limited treatment options approved by the FDA and as such currently available. The advent of neuroimaging techniques that link neurochemical and neurogenetic mechanisms to the reward circuitry brain function provides a framework for potential genomic-based therapies. AREAS COVERED Through candidate and genome-wide association studies approaches, many gene polymorphisms and clusters have been implicated in drug, food and behavioral dependence linked by the common rubric reward deficiency syndrome (RDS). The results of selective studies that include the role of epigenetics, noncoding micro RNAs in RDS behaviors especially drug abuse involving alcohol, opioids, cocaine, nicotine, pain and feeding are reviewed in this article. New targets for addiction treatment and relapse prevention, treatment alternatives such as gene therapy in animal models, and pharmacogenomics and nutrigenomics methods to manipulate transcription and gene expression are explored. EXPERT OPINION The recognition of the clinical benefit of early genetic testing to determine addiction risk stratification and dopaminergic agonistic, rather than antagonistic therapies are potentially the genomic-based wave of the future. In addition, further development, especially in gene transfer work and viral vector identification, could make gene therapy for RDS a possibility in the future.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine , Gainesville, FL , USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang F, Zhang Y, He C, Wang T, Piao Q, Liu Q. Silencing the gene encoding C/EBP homologous protein lessens acute brain injury following ischemia/reperfusion. Neural Regen Res 2014; 7:2432-8. [PMID: 25337093 PMCID: PMC4200717 DOI: 10.3969/j.issn.1673-5374.2012.31.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
C/EBP homologous protein, an important transcription factor during endoplasmic reticulum stress, participates in cell apoptosis mediated by endoplasmic reticulum stress. Previous studies have shown that C/EBP homologous protein mediates nerve injury during Alzheimer’s disease, subarachnoid hemorrhage and spinal cord trauma. In this study, we introduced C/EBP homologous protein short hairpin RNA into the brains of ischemia/reperfusion rat models via injection of lentiviral vector through the left lateral ventricle. Silencing C/EBP homologous protein gene expression significantly reduced cerebral infarction volume, decreased water content and tumor necrosis factor-α and interleukin-1β mRNA expression in brain tissues following infarction, diminished the number of TUNEL-positive cells in the infarct region, decreased caspase-3 protein content and increased Bcl-2 protein content. These results suggest that silencing C/EBP homologous protein lessens cell apoptosis and inflammatory reactions, thereby protecting nerves.
Collapse
Affiliation(s)
- Fengzhang Wang
- Department of Neurology, Bethune First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| | - Yuan Zhang
- Department of Neonatology, Bethune First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| | - Chunke He
- Department of Orthopedics, Jilin Hospital of Integrated Traditional and Western Medicine, Changchun 130021, Jilin Province, China
| | - Tingting Wang
- Department of Infectious Diseases, Zibo First Hospital, Zibo 255200, Shandong Province, China
| | - Qiyan Piao
- Department of Cardiology, General Hospital of China National Petroleum Corporation in Jilin, Jilin 132021, Jilin Province, China
| | - Qun Liu
- Department of Neurology, Bethune First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
5
|
Tian Z, Fan J, Zhao Y, Bi S, Si L, Liu Q. Estrogen receptor beta treats Alzheimer's disease. Neural Regen Res 2014; 8:420-6. [PMID: 25206683 PMCID: PMC4146138 DOI: 10.3969/j.issn.1673-5374.2013.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 10/10/2012] [Indexed: 12/26/2022] Open
Abstract
In vitro studies have shown that estrogen receptor β can attenuate the cytotoxic effect of amyloid β protein on PC12 cells through the Akt pathway without estrogen stimulation. In this study, we aimed to observe the effect of estrogen receptor β in Alzheimer's disease rat models established by intraventricular injection of amyloid β protein. Estrogen receptor β lentiviral particles delivered via intraventricular injection increased Akt content in the hippocampus, decreased interleukin-1β mRNA, tumor necrosis factor α mRNA and amyloid β protein levels in the hippocampus, and improved the learning and memory capacities in Alzheimer's disease rats. Estrogen receptor β short hairpin RNA lentiviral particles delivered via intraventricular injection had none of the above impacts on Alzheimer's disease rats. These experimental findings indicate that estrogen receptor β, independent from estrogen, can reduce inflammatory reactions and amyloid β deposition in the hippocampus of Alzheimer's disease rats, and improve learning and memory capacities. This effect may be mediated through activation of the Akt pathway.
Collapse
Affiliation(s)
- Zhu Tian
- Department of Neurology, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Jia Fan
- Department of Neurology, the Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Yang Zhao
- Department of Neurology, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Sheng Bi
- Department of Neurology, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Lihui Si
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Qun Liu
- Department of Neurology, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
6
|
Gao J, Zhang C, Fu X, Yi Q, Tian F, Ning Q, Luo X. Effects of targeted suppression of glutaryl-CoA dehydrogenase by lentivirus-mediated shRNA and excessive intake of lysine on apoptosis in rat striatal neurons. PLoS One 2013; 8:e63084. [PMID: 23658800 PMCID: PMC3642093 DOI: 10.1371/journal.pone.0063084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 03/29/2013] [Indexed: 12/31/2022] Open
Abstract
In glutaric aciduria type 1 (GA1), glutaryl-CoA dehydrogenase (GCDH) deficiency has been shown to be responsible for the accumulation of glutaric acid and striatal degeneration. However, the mechanisms by which GA1 induces striatal degeneration remain unclear. In this study, we aimed to establish a novel neuronal model of GA1 and to investigate the effects of GCDH deficiency and lysine-related metabolites on the viability of rat striatal neurons. Thus we constructed a lentiviral vector containing short hairpin RNA targeted against the GCDH gene expression (lentivirus-shRNA) in neurons. A virus containing a scrambled short hairpin RNA construct served as a control. Addition of lysine (5 mmol/L) was used to mimic hypermetabolism. Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Apoptosis was assessed using Hoechst33342 staining and Annexin V-PE/7-AAD staining. The mitochondrial membrane potential (MPP) was monitored using tetramethylrhodamine methyl ester. The expression levels of caspases 3, 8, and 9 were determined by Western blotting. We found that lentivirus-shRNA induced apoptosis and decreased MMP levels in neurons, and addition of 5 mmol/L lysine enhanced this effect markedly. Lentivirus-shRNA upregulated the protein levels of caspases 3 and 9 regardless of the presence of 5 mmol/L lysine. The expression level of caspase 8 was higher in neurons co-treated with lentivirus-shRNA and 5 mmol/L lysine than in control. Benzyloxy-carbonyl-Val-Ala-Asp(OMe)-fluoromethylketone, a pan-caspase inhibitor, blocked the apoptosis induced by lentivirus-shRNA and 5 mmol/L lysine to a great extent. These results indicate that the targeted suppression of GCDH by lentivirus-mediated shRNA and excessive intake of lysine may be a useful cell model of GA1. These also suggest that GA1-induced striatal degeneration is partially caspase-dependent.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/enzymology
- Amino Acid Metabolism, Inborn Errors/metabolism
- Amino Acid Metabolism, Inborn Errors/pathology
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Base Sequence
- Biological Transport/genetics
- Brain Diseases, Metabolic/enzymology
- Brain Diseases, Metabolic/metabolism
- Brain Diseases, Metabolic/pathology
- Caspase Inhibitors/pharmacology
- Cell Survival/drug effects
- Cell Survival/genetics
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Gene Knockdown Techniques
- Glutaryl-CoA Dehydrogenase/deficiency
- Glutaryl-CoA Dehydrogenase/genetics
- Glutaryl-CoA Dehydrogenase/metabolism
- Lentivirus/genetics
- Lysine/metabolism
- Lysine/pharmacology
- Membrane Potential, Mitochondrial/drug effects
- Membrane Potential, Mitochondrial/genetics
- Neostriatum/cytology
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- RNA, Small Interfering/genetics
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jinzhi Gao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Fu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Yi
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengyan Tian
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
7
|
Lin LD, Lin SK, Chao YL, Kok SH, Hong CY, Hou KL, Lai EHH, Yang H, Lee MS, Wang JS. Simvastatin suppresses osteoblastic expression of Cyr61 and progression of apical periodontitis through enhancement of the transcription factor Forkhead/winged helix box protein O3a. J Endod 2013; 39:619-25. [PMID: 23611379 DOI: 10.1016/j.joen.2012.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/26/2012] [Accepted: 12/10/2012] [Indexed: 01/12/2023]
Abstract
INTRODUCTION In this study, the role of transcription factor Forkhead/winged helix box protein O3a (FoxO3a) in Cyr61 expression and its modulation by simvastatin were investigated in cultured murine osteoblasts and a rat model of induced apical periodontitis. We also examined the effects of simvastatin on the synthesis of chemokine CCL2 and chemotaxis of macrophages in vitro. METHODS We assessed tumor necrosis factor (TNF)-α-stimulated expression of Cyr61 and phosphorylated inactive FoxO3a (p-FoxO3a) in MC3T3-E1 murine osteoblasts by Western analysis. Forced expression of FoxO3a by lentiviral-based gene transduction was performed, and its effect on Cyr61 expression was evaluated. The modulation of CCL2 secretion and macrophage chemotaxis by simvastatin were examined by enzyme-linked immunosorbent assay and transwell migration assay, respectively. In a rat model of induced apical periodontitis, the relation between disease progression and osteoblastic expression of Cyr61, p-FoxO3a, and CCL2 and macrophage recruitment were studied by radiographic and immunohistochemistry analyses. RESULTS Western blot analysis showed enhanced expression of Cyr61 and p-FoxO3a after TNF-α treatment in a time-dependent manner. Simvastatin significantly counteracted the actions of TNF-α. Forced expression of FoxO3a reduced TNF-α-stimulated Cyr61 synthesis. Simvastatin and FoxO3a diminished TNF-α-induced CCL2 secretion and macrophage recruitment, whereas Cyr61 partially restored the stimulating action. In rat periapical lesions, simvastatin significantly attenuated bone resorption, reduced osteoblastic expressions of Cyr61, p-FoxO3a, and CCL2, and suppressed macrophage recruitment. CONCLUSIONS Simvastatin may alleviate periapical lesions by enhancing FoxO3a activity to suppress the synthesis of Cyr61 in osteoblasts. Moreover, the downstream effector mechanism of Cyr61 may involve CCL2 production and macrophage recruitment.
Collapse
Affiliation(s)
- Li-Deh Lin
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci U S A 2012; 109:E3136-45. [PMID: 23054839 DOI: 10.1073/pnas.1206506109] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by expanded CAG repeats in the huntingtin (HTT) gene. Although several palliative treatments are available, there is currently no cure and patients generally die 10-15 y after diagnosis. Several promising approaches for HD therapy are currently in development, including RNAi and antisense analogs. We developed a complementary strategy to test repression of mutant HTT with zinc finger proteins (ZFPs) in an HD model. We tested a "molecular tape measure" approach, using long artificial ZFP chains, designed to bind longer CAG repeats more strongly than shorter repeats. After optimization, stable ZFP expression in a model HD cell line reduced chromosomal expression of the mutant gene at both the protein and mRNA levels (95% and 78% reduction, respectively). This was achieved chromosomally in the context of endogenous mouse HTT genes, with variable CAG-repeat lengths. Shorter wild-type alleles, other genomic CAG-repeat genes, and neighboring genes were unaffected. In vivo, striatal adeno-associated virus viral delivery in R6/2 mice was efficient and revealed dose-dependent repression of mutant HTT in the brain (up to 60%). Furthermore, zinc finger repression was tested at several levels, resulting in protein aggregate reduction, reduced decline in rotarod performance, and alleviation of clasping in R6/2 mice, establishing a proof-of-principle for synthetic transcription factor repressors in the brain.
Collapse
|
9
|
Male H, Patel V, Jacob MA, Borrego-Diaz E, Wang K, Young DA, Wise AL, Huang C, Van Veldhuizen P, O'Brien-Ladner A, Williamson SK, Taylor SA, Tawfik O, Esfandyari T, Farassati F. Inhibition of RalA signaling pathway in treatment of non-small cell lung cancer. Lung Cancer 2012; 77:252-9. [PMID: 22498113 DOI: 10.1016/j.lungcan.2012.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 03/07/2012] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and relatively resistant to chemotherapy. The most prevalent molecular abnormality in NSCLC is the overactivation of K-Ras proto-oncogene; therefore, elucidating down-stream Ras signaling in NSCLC is significantly important in developing novel therapies against this malignancy. Our work indicates that RalA, an important effector of Ras, is activated in NSCLC cell lines. While RalA was also overactivated in fetal human broncho-epithelial cells, RalBP1 (Ral binding protein-1), an important down-stream effector of RalA, was expressed at higher levels in cancer cell lines. Aurora kinase-A (AKA), an upstream activator of RalA, was also found to be active only in malignant cells. The outcome of inhibition of RalA (by gene specific silencing using a lentivirus) on the malignant phenotype of A549 cells was also studied. While proliferation and invasiveness of A549 cells were reduced upon silencing RalA, apoptosis and necrosis were elevated in such conditions. Additionally, the in vivo tumorigenesis of A549 cells was reduced upon partial inhibition of RalA and AKA using pharmacological inhibitors. Finally, we were interested in evaluating the level of active RalA in the fraction of NSCLC cells expressing cancer stem cell markers. For this purpose cells with increased expression of CD44 were separated from A549 cells and compared with cells with low level of expression of this marker and an unsorted population. A significant enhancement of RalA activation in high CD44+ cells was found as potential evidence for involvement of RalA signaling in initiation of the neoplastic procedure and an important contributor for tumor maintenance in NSCLC. Further studies can reveal therapeutic, preventive and diagnostic value of RalA pathway in this deadly disease.
Collapse
Affiliation(s)
- Heather Male
- The University of Kansas Medical Center, Department of Medicine - Divisions of Hematology/Oncology & Gastroenterology, Molecular Medicine Laboratory, Kansas City, KS, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bahi A, Dreyer JL. Involvement of tissue plasminogen activator “tPA” in ethanol-induced locomotor sensitization and conditioned-place preference. Behav Brain Res 2012; 226:250-8. [DOI: 10.1016/j.bbr.2011.09.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/25/2011] [Accepted: 09/12/2011] [Indexed: 12/26/2022]
|
11
|
Madronal N, Gruart A, Valverde O, Espadas I, Moratalla R, Delgado-Garcia JM. Involvement of Cannabinoid CB1 Receptor in Associative Learning and in Hippocampal CA3-CA1 Synaptic Plasticity. Cereb Cortex 2011; 22:550-66. [DOI: 10.1093/cercor/bhr103] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
12
|
Morgenstern PF, Marongiu R, Musatov SA, Kaplitt MG. Adeno-associated viral gene delivery in neurodegenerative disease. Methods Mol Biol 2011; 793:443-55. [PMID: 21913118 DOI: 10.1007/978-1-61779-328-8_29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The advent of viral gene therapy technology has contributed greatly to the study of a variety of medical conditions, and there is increasing promise for clinical translation of gene therapy into human treatments. Adeno-associated viral (AAV) vectors provide one of the more promising approaches to gene delivery, and have been used extensively over the last 20 years. Derived from nonpathogenic parvoviruses, these vectors allow for stable and robust expression of desired transgenes in vitro and in vivo. AAV vectors efficiently and stably transduce neurons, with some strains targeting neurons exclusively in the brain. Thus, AAV vectors are particularly useful for neurodegenerative diseases, which have led to numerous preclinical studies and several human trials of gene therapy in patients with Parkinson's disease, Alzheimer's disease, and pediatric neurogenetic disorders. Here, we describe an efficient and reliable method for the production and purification of AAV serotype 2 vectors for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Peter F Morgenstern
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | | | | | | |
Collapse
|
13
|
Associative learning and CA3-CA1 synaptic plasticity are impaired in D1R null, Drd1a-/- mice and in hippocampal siRNA silenced Drd1a mice. J Neurosci 2010; 30:12288-300. [PMID: 20844125 DOI: 10.1523/jneurosci.2655-10.2010] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Associative learning depends on multiple cortical and subcortical structures, including striatum, hippocampus, and amygdala. Both glutamatergic and dopaminergic neurotransmitter systems have been implicated in learning and memory consolidation. While the role of glutamate is well established, the role of dopamine and its receptors in these processes is less clear. In this study, we used two models of dopamine D(1) receptor (D(1)R, Drd1a) loss, D(1)R knock-out mice (Drd1a(-/-)) and mice with intrahippocampal injections of Drd1a-siRNA (small interfering RNA), to study the role of D(1)R in different models of learning, hippocampal long-term potentiation (LTP) and associated gene expression. D(1)R loss markedly reduced spatial learning, fear learning, and classical conditioning of the eyelid response, as well as the associated activity-dependent synaptic plasticity in the hippocampal CA1-CA3 synapse. These results provide the first experimental demonstration that D(1)R is required for trace eyeblink conditioning and associated changes in synaptic strength in hippocampus of behaving mice. Drd1a-siRNA mice were indistinguishable from Drd1a(-/-) mice in all experiments, indicating that hippocampal knockdown was as effective as global inactivation and that the observed effects are caused by loss of D(1)R and not by indirect developmental effects of Drd1a(-/-). Finally, in vivo LTP and LTP-induced expression of Egr1 in the hippocampus were significantly reduced in Drd1a(-/-) and Drd1a-siRNA, indicating an important role for D(1)R in these processes. Our data reveal a functional relationship between acquisition of associative learning, increase in synaptic strength at the CA3-CA1 synapse, and Egr1 induction in the hippocampus by demonstrating that all three are dramatically impaired when D(1)R is eliminated or reduced.
Collapse
|
14
|
Sugiura A, Yonashiro R, Fukuda T, Matsushita N, Nagashima S, Inatome R, Yanagi S. A mitochondrial ubiquitin ligase MITOL controls cell toxicity of polyglutamine-expanded protein. Mitochondrion 2010; 11:139-46. [PMID: 20851218 DOI: 10.1016/j.mito.2010.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 08/13/2010] [Accepted: 09/09/2010] [Indexed: 01/30/2023]
Abstract
Expansion of a polyglutamine tract in ataxin-3 (polyQ) causes Machado-Joseph disease, a late-onset neurodegenerative disorder characterized by ubiquitin-positive aggregate formation. Several lines of evidence demonstrate that polyQ also accumulates in mitochondria and causes mitochondrial dysfunction. To uncover the mechanism of mitochondrial quality-control via the ubiquitin-proteasome pathway, we investigated whether MITOL, a novel mitochondrial ubiquitin ligase localized in the mitochondrial outer membrane, is involved in the degradation of pathogenic ataxin-3 in mitochondria. In this study, we used N-terminal-truncated pathogenic ataxin-3 with a 71-glutamine repeat (ΔNAT-3Q71) and found that MITOL promoted ΔNAT-3Q71 degradation via the ubiquitin-proteasome pathway and attenuated mitochondrial accumulation of ΔNAT-3Q71. Conversely, MITOL knockdown induced an accumulation of detergent-insoluble ΔNAT-3Q71 with large aggregate formation, resulting in cytochrome c release and subsequent cell death. Thus, MITOL plays a protective role against polyQ toxicity, and thereby may be a potential target for therapy in polyQ diseases. Our findings indicate a protein quality-control mechanism at the mitochondrial outer membrane via a MITOL-mediated ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Ayumu Sugiura
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | |
Collapse
|