1
|
Cervantes-Chávez JA, Valdés-Santiago L, Bakkeren G, Hurtado-Santiago E, León-Ramírez CG, Esquivel-Naranjo EU, Landeros-Jaime F, Rodríguez-Aza Y, Ruiz-Herrera J. Trehalose is required for stress resistance and virulence of the Basidiomycota plant pathogen Ustilago maydis. MICROBIOLOGY-SGM 2016; 162:1009-1022. [PMID: 27027300 DOI: 10.1099/mic.0.000287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trehalose is an important disaccharide that can be found in bacteria, fungi, invertebrates and plants. In some Ascomycota fungal plant pathogens, the role of trehalose was recently studied and shown to be important for conferring protection against several environmental stresses and for virulence. In most of the fungi studied, two enzymes are involved in the synthesis of trehalose: trehalose-6-phosphate synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2). To study the role of trehalose in virulence and stress response in the Basidiomycota maize pathogen Ustilago maydis, Δtps2 deletion mutants were constructed. These mutants did not produce trehalose as confirmed by HPLC analysis, showing that the single gene disruption impaired its biosynthesis. The mutants displayed increased sensitivity to oxidative, heat, acid, ionic and osmotic stresses as compared to the wild-type strains. Virulence of Δtps2 mutants to maize plants was extremely reduced compared to wild-type strains, possibly due to reduced capability to deal with the hostile host environment. The phenotypic traits displayed by Δtps2 strains were fully restored to wild-type levels when complemented with the endogenous UmTPS2 gene, or a chimeric construct having the Saccharomyces cerevisiae TPS2 ORF. This report demonstrates the presence of a single biosynthetic pathway for trehalose, and its importance for virulence in this model Basidiomycota plant pathogen.
Collapse
Affiliation(s)
- José Antonio Cervantes-Chávez
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Santiago de Querétaro, Qro, Mexico
| | - Laura Valdés-Santiago
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto, Mexico
| | - Guus Bakkeren
- Agriculture & Agri-Food Canada, Summerland Research & Development, BC, Canada
| | - Edda Hurtado-Santiago
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Santiago de Querétaro, Qro, Mexico
| | | | - Edgardo Ulises Esquivel-Naranjo
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Santiago de Querétaro, Qro, Mexico
| | - Fidel Landeros-Jaime
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Santiago de Querétaro, Qro, Mexico
| | - Yolanda Rodríguez-Aza
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto, Mexico
| | - José Ruiz-Herrera
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto, Mexico
| |
Collapse
|
2
|
Feder V, Kmetzsch L, Staats CC, Vidal-Figueiredo N, Ligabue-Braun R, Carlini CR, Vainstein MH. Cryptococcus gattii urease as a virulence factor and the relevance of enzymatic activity in cryptococcosis pathogenesis. FEBS J 2015; 282:1406-18. [PMID: 25675897 DOI: 10.1111/febs.13229] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 01/19/2015] [Accepted: 02/05/2015] [Indexed: 11/26/2022]
Abstract
Ureases (EC 3.5.1.5) are Ni(2+) -dependent metalloenzymes produced by plants, fungi and bacteria that hydrolyze urea to produce ammonia and CO2 . The insertion of nickel atoms into the apo-urease is better characterized in bacteria, and requires at least three accessory proteins: UreD, UreF, and UreG. Our group has demonstrated that ureases possess ureolytic activity-independent biological properties that could contribute to the pathogenicity of urease-producing microorganisms. The presence of urease in pathogenic bacteria strongly correlates with pathogenesis in some human diseases. Some medically important fungi also produce urease, including Cryptococcus neoformans and Cryptococcus gattii. C. gattii is an etiological agent of cryptococcosis, most often affecting immunocompetent individuals. The cryptococcal urease might play an important role in pathogenesis. It has been proposed that ammonia produced via urease action might damage the host endothelium, which would enable yeast transmigration towards the central nervous system. To analyze the role of urease as a virulence factor in C. gattii, we constructed knockout mutants for the structural urease-coding gene URE1 and for genes that code the accessory proteins Ure4 and Ure6. All knockout mutants showed reduced multiplication within macrophages. In intranasally infected mice, the ure1Δ (lacking urease protein) and ure4Δ (enzymatically inactive apo-urease) mutants caused reduced blood burdens and a delayed time of death, whereas the ure6Δ (enzymatically inactive apo-urease) mutant showed time and dose dependency with regard to fungal burden. Our results suggest that C. gattii urease plays an important role in virulence, in part possibly through enzyme activity-independent mechanism(s).
Collapse
Affiliation(s)
- Vanessa Feder
- Programa de Pós Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
3
|
An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution. PLoS Pathog 2014; 10:e1004223. [PMID: 24992661 PMCID: PMC4081816 DOI: 10.1371/journal.ppat.1004223] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 05/15/2014] [Indexed: 11/19/2022] Open
Abstract
The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE), interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity in its corn host.
Collapse
|
4
|
Genetic surgery in fungi: employing site-specific recombinases for genome manipulation. Appl Microbiol Biotechnol 2014; 98:1971-82. [DOI: 10.1007/s00253-013-5480-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/21/2022]
|
5
|
López-Fernández L, Ruiz-Roldán C, Pareja-Jaime Y, Prieto A, Khraiwesh H, Roncero MIG. The Fusarium oxysporum gnt2, encoding a putative N-acetylglucosamine transferase, is involved in cell wall architecture and virulence. PLoS One 2013; 8:e84690. [PMID: 24416097 PMCID: PMC3886883 DOI: 10.1371/journal.pone.0084690] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 11/26/2013] [Indexed: 01/12/2023] Open
Abstract
With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity.
Collapse
Affiliation(s)
- Loida López-Fernández
- Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
- Campus de Excelencia Agroalimentario (ceiA3), Córdoba, Spain
| | - Carmen Ruiz-Roldán
- Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
- Campus de Excelencia Agroalimentario (ceiA3), Córdoba, Spain
| | - Yolanda Pareja-Jaime
- Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
- Campus de Excelencia Agroalimentario (ceiA3), Córdoba, Spain
| | - Alicia Prieto
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Husam Khraiwesh
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - M. Isabel G. Roncero
- Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
- Campus de Excelencia Agroalimentario (ceiA3), Córdoba, Spain
- * E-mail:
| |
Collapse
|
6
|
Flor-Parra I, Zhurinsky J, Bernal M, Gallardo P, Daga RR. A Lallzyme MMX-based rapid method for fission yeast protoplast preparation. Yeast 2013; 31:61-6. [PMID: 24323433 DOI: 10.1002/yea.2994] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/20/2013] [Accepted: 12/02/2013] [Indexed: 02/03/2023] Open
Abstract
Fungal cells including yeasts are surrounded by cell wall that counteracts turgor pressure and prevents cell lysis. Many yeast experiments, including genetic manipulation of sterile strains, morphogenesis studies, nucleic acid isolation and many others, require mechanical breakage or enzymatic removal of the cell wall. Some of these experiments require the generation of live cells lacking cell walls, called protoplasts, that can be maintained in osmostabilized medium. Enzymatic digestion of cell wall proteoglycans is a commonly used method of protoplast preparation. Currently existing protocols for fission yeast cell wall digestion are time consuming and not very efficient. We developed a new rapid method for fission yeast protoplast preparation that relies on digesting cell walls with Lallzyme MMX commercial enzyme mix, which produces protoplasts from all cells in less than 10 min. We demonstrate that these protoplasts can be utilized in three commonly used fission yeast protocols. Thus, we provide the fission yeast community with a robust and efficient plasmid extraction method, a new protocol for diploid generation and an assay for protoplast recovery that should be useful for studies of morphogenesis. Our method is potentially applicable to other yeasts and fungi.
Collapse
Affiliation(s)
- Ignacio Flor-Parra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Xu J, Linning R, Fellers J, Dickinson M, Zhu W, Antonov I, Joly DL, Donaldson ME, Eilam T, Anikster Y, Banks T, Munro S, Mayo M, Wynhoven B, Ali J, Moore R, McCallum B, Borodovsky M, Saville B, Bakkeren G. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi. BMC Genomics 2011; 12:161. [PMID: 21435244 PMCID: PMC3074555 DOI: 10.1186/1471-2164-12-161] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 03/24/2011] [Indexed: 12/30/2022] Open
Abstract
Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt), we have generated Expressed Sequence Tags (ESTs) by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores) and asexual (germinated urediniospores) stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum), 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs). Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt) and stripe rust, P. striiformis f. sp. tritici (Pst), and poplar leaf rust Melampsora species, and the corn smut fungus, Ustilago maydis (Um). While extensive homologies were found, many genes appeared novel and species-specific; over 40% of genes did not match any known sequence in existing databases. Focusing on spore stages, direct comparison to Um identified potential functional homologs, possibly allowing heterologous functional analysis in that model fungus. Many potentially secreted protein genes were identified by similarity searches against genes and proteins of Pgt and Melampsora spp., revealing apparent orthologs. Conclusions The current set of Pt unigenes contributes to gene discovery in this major cereal pathogen and will be invaluable for gene model verification in the genome sequence.
Collapse
Affiliation(s)
- Junhuan Xu
- Pacific Agri-Food Research Centre, Agriculture & Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cervantes-Chávez JA, Ali S, Bakkeren G. Response to environmental stresses, cell-wall integrity, and virulence are orchestrated through the calcineurin pathway in Ustilago hordei. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:219-232. [PMID: 20977307 DOI: 10.1094/mpmi-09-10-0202] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In eukaryotes, several biological processes are regulated through calcium signaling. Calcineurin is a calcium-calmodulin-regulated serine/threonine phosphatase consisting of catalytic subunit A and regulatory subunit B. Phosphatase activity resides in the catalytic subunit, which activates by dephosphorylation downstream components such as transcription factor Crz1. The importance of this pathway to respond to environmental stress has been explored in several fungal pathogens. The basidiomycete Ustilago hordei causes covered smut of barley. We addressed the role of the Ca(2+)-calcineurin activated pathway by deleting UhCna1 and UhCnb1. These genes were not essential in U. hordei but the corresponding mutants displayed a variety of phenotypes when applying environmental stress such as sensitivity to pH, temperature, H₂O₂, mono- and divalent cations; and to genotoxic, acid, or oxidative stresses. Cell-wall integrity was compromised and mutants displayed altered cell morphologies. Mating was delayed but not abolished, and combined sensitivities likely explained a severely reduced virulence toward barley plants. Expression analyses revealed that response to salt stress involved the induction of membrane ATPase genes UhEna1 and UhEna2, which were regulated through the calcineurin pathway. Upregulation of UhFKS1, a 1,3-β-d-glucan synthase gene, correlated with the increased amount of 1,3-β-d-glucan in the calcineurin mutants grown under salt stress.
Collapse
|