1
|
Akutsu H, Nasu M, Morinaga S, Motoyama T, Homma N, Machida M, Yamazaki-Inoue M, Okamura K, Nakabayashi K, Takada S, Nakamura N, Kanzaki S, Hata K, Umezawa A. In vivo maturation of human embryonic stem cell-derived teratoma over time. Regen Ther 2016; 5:31-39. [PMID: 31245498 PMCID: PMC6581884 DOI: 10.1016/j.reth.2016.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/19/2016] [Indexed: 12/31/2022] Open
Abstract
Transformation of human embryonic stem cells (hESC) is of interest to scientists who use them as a raw material for cell-processed therapeutic products. However, the WHO and ICH guidelines provide only study design advice and general principles for tumorigenicity tests. In this study, we performed in vivo tumorigenicity tests (teratoma formation) and genome-wide sequencing analysis of undifferentiated hESCs i.e. SEES-1, -2 and -3 cells. We followed up with teratoma formation histopathologically after subcutaneous injection of SEES cells into immunodeficient mice in a qualitative manner and investigated the transforming potential of the teratomas. Maturity of SEES-teratomas perceptibly increased after long-term implantation, while areas of each tissue component remained unchanged. We found neither atypical cells/structures nor cancer in the teratomas even after long-term implantation. The teratomas generated by SEES cells matured histologically over time and did not increase in size. We also analyzed genomic structures and sequences of SEES cells during cultivation by SNP bead arrays and next-generation sequencing, respectively. The nucleotide substitution rate was 3.1 × 10-9, 4.0 × 10-9, and 4.6 × 10-9 per each division in SEES-1, SEES-2, and SEES-3 cells, respectively. Heterozygous single-nucleotide variations were detected, but no significant homologous mutations were found. Taken together, these results imply that SEES-1, -2, and -3 cells do not exhibit in vivo transformation and in vitro genomic instability.
Collapse
Affiliation(s)
- Hidenori Akutsu
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Michiyo Nasu
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | - Teiichi Motoyama
- Department of Pathology, Yamagata University School of Medicine, Yamagata, Japan
| | - Natsumi Homma
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- School of BioMedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masakazu Machida
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mayu Yamazaki-Inoue
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Naoko Nakamura
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Seiichi Kanzaki
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
2
|
Goldring CEP, Duffy PA, Benvenisty N, Andrews PW, Ben-David U, Eakins R, French N, Hanley NA, Kelly L, Kitteringham NR, Kurth J, Ladenheim D, Laverty H, McBlane J, Narayanan G, Patel S, Reinhardt J, Rossi A, Sharpe M, Park BK. Assessing the safety of stem cell therapeutics. Cell Stem Cell 2012; 8:618-28. [PMID: 21624806 DOI: 10.1016/j.stem.2011.05.012] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Unprecedented developments in stem cell research herald a new era of hope and expectation for novel therapies. However, they also present a major challenge for regulators since safety assessment criteria, designed for conventional agents, are largely inappropriate for cell-based therapies. This article aims to set out the safety issues pertaining to novel stem cell-derived treatments, to identify knowledge gaps that require further research, and to suggest a roadmap for developing safety assessment criteria. It is essential that regulators, pharmaceutical providers, and safety scientists work together to frame new safety guidelines, based on "acceptable risk," so that patients are adequately protected but the safety "bar" is not set so high that exciting new treatments are lost.
Collapse
Affiliation(s)
- Chris E P Goldring
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, The Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3GE, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
No other branch of science is quite so laden with expectation. But while corralling stem cells for viable therapies, researchers have found themselves asking an entirely separate question: How do we track them?
Collapse
|
4
|
Wen Y, Chen B, Ildstad ST. Stem cell-based strategies for the treatment of type 1 diabetes mellitus. Expert Opin Biol Ther 2010; 11:41-53. [PMID: 21110785 DOI: 10.1517/14712598.2011.540235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE OF THE FIELD β-Cell regeneration and β-cell preservation are two promising therapeutic approaches for the management of patients with type 1 diabetes (T1D). Stem cell-based strategies to address the problems of shortage in β cells, autoimmune and alloimmune responses have become an area of intense study. AREAS COVERED IN THIS REVIEW This review focuses on the progress that has been made in obtaining functional, insulin-producing cells from various types of stem/progenitor cells, including the current knowledge on the immunomodulatory roles of hematopoietic stem cell and multipotent stromal cell in the therapies for T1D. WHAT THE READER WILL GAIN A broad overview of recent advancements in this field is provided. The hurdles that remain in the path of using stem cell-based strategies for the treatment of T1D and possible approaches to overcome these challenges are discussed. TAKE HOME MESSAGE Stem cell-based strategies hold great promise for the treatment of T1D. In spite of the progress that has been made over the last decade, a number of obstacles and concerns need to be cleared before widespread clinical application is possible. In particular, the mechanism of ESC and iPSC-derived β-cell maturation in vivo is poorly understood.
Collapse
Affiliation(s)
- Yujie Wen
- University of Louisville, Institute for Cellular Therapeutics, Louisville, KY 40202-1760, USA
| | | | | |
Collapse
|