1
|
Kind S, Castillo CP, Schlichter R, Gorbokon N, Lennartz M, Hornsteiner LS, Dwertmann Rico S, Reiswich V, Viehweger F, Kluth M, Hube-Magg C, Bernreuther C, Büscheck F, Clauditz TS, Fraune C, Hinsch A, Krech T, Lebok P, Steurer S, Burandt E, Minner S, Marx AH, Simon R, Wilczak W, Sauter G, Menz A, Jacobsen F. KLK7 expression in human tumors: a tissue microarray study on 13,447 tumors. BMC Cancer 2024; 24:794. [PMID: 38961454 PMCID: PMC11221178 DOI: 10.1186/s12885-024-12552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Kallikrein-related peptidase 7 (KLK7) is a chymotrypsin-like serine protease which is essential for the desquamation of corneocytes and thus plays a pivotal role in maintaining skin homeostasis. In cancer, KLK7 overexpression was suggested to represent a route for metastasis through cleavage of cell junction and extracellular matrix proteins of cancer cells. METHODS To comprehensively determine KLK7 protein expression in normal and neoplastic tissues, a tissue microarray containing 13,447 samples from 147 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. RESULTS KLK7 positivity was found in 64 of 147 tumor categories, including 17 tumor categories with at least one strongly positive case. The highest rate of KLK7 positivity was found in squamous cell carcinomas from various sites of origin (positive in 18.1%-63.8%), ovarian and endometrium cancers (4.8%-56.2%), salivary gland tumors (4.8%-13.7%), bilio-pancreatic adenocarcinomas (20.0%-40.4%), and adenocarcinomas of the upper gastrointestinal tract (3.3%-12.5%). KLK7 positivity was linked to nodal metastasis (p = 0.0005), blood vessel infiltration (p = 0.0037), and lymph vessel infiltration (p < 0.0001) in colorectal adenocarcinoma, nodal metastasis in hepatocellular carcinoma (p = 0.0382), advanced pathological tumor stage in papillary thyroid cancer (p = 0.0132), and low grade of malignancy in a cohort of 719 squamous cell carcinomas from 11 different sites of origin (p < 0.0001). CONCLUSIONS These data provide a comprehensive overview on KLK7 expression in normal and neoplastic human tissues. The prognostic relevance of KLK7 expression and the possible role of KLK7 as a drug target need to be further investigated.
Collapse
Affiliation(s)
- Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Carolina Palacios Castillo
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Lisa S Hornsteiner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Sebastian Dwertmann Rico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Andreas H Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany.
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| |
Collapse
|
2
|
Schallenberg S, Plage H, Hofbauer S, Furlano K, Weinberger S, Bruch PG, Roßner F, Elezkurtaj S, Kluth M, Lennartz M, Blessin NC, Marx AH, Samtleben H, Fisch M, Rink M, Slojewski M, Kaczmarek K, Ecke T, Hallmann S, Koch S, Adamini N, Minner S, Simon R, Sauter G, Horst D, Klatte T, Schlomm T, Zecha H. Altered p53/p16 expression is linked to urothelial carcinoma progression but largely unrelated to prognosis in muscle-invasive tumors. Acta Oncol 2023; 62:1880-1889. [PMID: 37938166 DOI: 10.1080/0284186x.2023.2277344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Most inactivating p53 mutations result in a nuclear p53 accumulation - detectable by immunohistochemistry (IHC). p53 alterations leading to a complete lack of p53 protein and absence of immunostaining do also occur - not easily detectable by IHC. p16 is upregulated in p53 inactivated cells. We hypothesized that a positive p16 IHC may help to distinguish p53 inactivation in IHC negative cases. MATERIAL AND METHODS We investigated p53 and p16 immunostaining on 2710 urothelial bladder carcinomas in a tissue microarray format to understand their impact in relation to clinicopathological parameters of disease progression and patient outcome. RESULTS p16 immunostaining was absent in normal urothelium but occurred in 63.5% (30.4% strong) of cancers. p16 strongly positive cases increased from pTaG2 low-grade (9.6%) to pTaG3 high-grade tumors (46.5%, p < .0001) but decreased from pTaG3 to pT4 (33.3%; p = .0030). Among pT2-4 carcinomas, p16 positivity was linked to high-grade (p = .0005) but unrelated to overall survival. p53 staining was negative in 8.4%, very weak in 15.4%, weak in 55.3%, strong in 4.7%, and very strong in 16.2% cancers. p53 negative (potentially p53 null phenotype), strong, and very strong p53 positivity increased from pTaG2 low-grade to pTaG3 high-grade tumors (p < .0001) and from pTaG3 to pT2-4 cancers (p = .0007). p53 staining was largely unrelated to histopathological parameters or patient prognosis among pT2-4 carcinomas, except of p53 strong/very strong immunostaining. p16 expression predominated in tumors with very strong, strong, and negative p53 staining and the combination of p53 negative/p16 strongly positive cancers was linked to features of tumor aggressiveness. CONCLUSION Aberrant p53 and p16 immunostaining increases during grade and stage progression although p53 negative and p16 positive immunostaining lack prognostic significance in pT2-4 carcinomas. Potential diagnostic features are that high level p16 expression is limited to neoplastic urothelium and p53 null phenotype to aggressive cancers (grade 3 and invasive).
Collapse
Affiliation(s)
| | - Henning Plage
- Department of Urology, Charité Berlin, Berlin, Germany
| | | | - Kira Furlano
- Department of Urology, Charité Berlin, Berlin, Germany
| | | | | | | | | | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niclas C Blessin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Henrik Samtleben
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, Marienhospital Hamburg, Hamburg, Germany
| | - Marcin Slojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Krystian Kaczmarek
- Department of Urology and Urological Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Thorsten Ecke
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Steffen Hallmann
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Stefan Koch
- Department of Pathology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Nico Adamini
- Department of Urology, Albertinen Hospital, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Horst
- Institute of Pathology, Charité Berlin, Berlin, Germany
| | - Tobias Klatte
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | | | - Henrik Zecha
- Department of Urology, Charité Berlin, Berlin, Germany
- Department of Urology, Albertinen Hospital, Hamburg, Germany
| |
Collapse
|
3
|
Lam SW, Silva TM, Traast-Kooistra J, Bruijn IBD, van den Akker B, Bakker PAC, Lansu J, Haas RLM, Bovée JVMG. Histological response to radiotherapy is an early event in myxoid liposarcoma. Virchows Arch 2023; 483:487-495. [PMID: 37572156 PMCID: PMC10611607 DOI: 10.1007/s00428-023-03615-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Compared to other sarcomas, myxoid liposarcoma (MLS) is exceptionally sensitive to radiation therapy, but the underlying mechanism remains unknown. The objective was to assess the tissue-based changes in MLS during and after neoadjuvant radiotherapy in 26 patients of the DOREMY trial. Morphological assessment was performed on biopsies pre-treatment, after 8 fractions, 16 factions, and after surgical resection and included percentage of viable tumor cells, hyalinization, necrosis, and fatty maturation. Furthermore, immunohistochemistry was performed for apoptosis (cleaved caspase-3), anti-apoptosis (Bcl-2), activity of mTOR signaling (phospho-S6), hypoxia (CAIX), proliferation (Ki67), inflammation (CD45 and CD68), and microvessel density (CD34 Chalkley count). A pronounced reduction in vital tumor cells was observed early with a drop to 32.5% (median) tumor cells (IQR 10-93.8%) after 8 fractions. This decreased further to 10% (IQR 5-30%) after 16 fractions and 7.5% (IQR 5-15%) in the surgical specimen. All but one patient had an excellent response with < 50% remaining tumor cells. Inversely, treatment response was mainly observed as hyalinization and less often as fatty maturation. Additionally, a decrease of inflammatory cells was noticed especially during the first eight fractions. Microvessel density remained stable over time. Immunohistochemical markers for apoptosis, anti-apoptosis, activity of mTOR signaling, proliferation, and hypoxia did not show any marked changes within the remaining tumor cells during and after radiotherapy. As a modest dose of neoadjuvant radiotherapy induces profound tissue changes in MLS, mainly during the first 8 fractions, current findings might suggest that in a carefully selected patient population further deintensification of radiotherapy might be explored.
Collapse
Affiliation(s)
- Suk Wai Lam
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tulio M Silva
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Vall d´Hebron University Hospital, Barcelona, Spain
| | | | | | - Brendy van den Akker
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pauline A C Bakker
- Department of Radiotherapy, Leiden University Medical Center, Leiden, the Netherlands
| | - Jules Lansu
- Department of Radiotherapy, Leiden University Medical Center, Leiden, the Netherlands
- Sarcoma Unit, Department of Radiotherapy, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rick L M Haas
- Department of Radiotherapy, Leiden University Medical Center, Leiden, the Netherlands
- Sarcoma Unit, Department of Radiotherapy, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
4
|
Nonredundant Upregulation of CD112R (PVRIG) and PD-1 on Cytotoxic T Lymphocytes Located in T Cell Nests of Colorectal Cancer. Mod Pathol 2023; 36:100089. [PMID: 36788088 DOI: 10.1016/j.modpat.2022.100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/29/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
Focal T lymphocyte aggregates commonly occur in colorectal cancer; however, their biological significance is unknown. To study focal aggregates of T lymphocytes, a deep learning-based framework for automated identification of T cell accumulations (T cell nests) was developed using CD8, PD-1, CD112R, and Ki67 multiplex fluorescence immunohistochemistry. To evaluate the clinical significance of these parameters, a cohort of 523 colorectal cancers with clinical follow-up data was analyzed. Spatial analysis of locally enriched CD8+ T cell density and cell-to-cell contacts identified T cell nests in the tumor microenvironment of colorectal cancer. CD112R and PD-1 expressions on CD8+ T cells located in T cell nests were found to be elevated compared with those on CD8+ T cells in all other tumor compartments (P < .001 each). Although the highest mean CD112R expression on CD8+ T cells was observed at the invasive margin, the PD-1 expression on CD8+ T cells was elevated in the center of the tumor (P < .001 each). Across all tissue compartments, proliferating CD8+ T cells showed higher relative CD112R and PD-1 expressions than those shown by non-proliferating CD8+ T cells (P < .001 each). Integration of all available spatial and immune checkpoint expression parameters revealed a superior predictive performance for overall survival (area under the curve, 0.65; 95% CI, 0.60-0.70) compared with the commonly used CD8+ tumor-infiltrating lymphocyte density (area under the curve, 0.57; 95% CI, 0.53-0.61; P < .001). Cytotoxic T cells with elevated CD112R and PD-1 expression levels are orchestrated in T cell nests of colorectal cancer and predict favorable patient outcomes, and the spatial nonredundancy underlies fundamental differences between both inhibitory immune checkpoints that provide a rationale for dual anti-CD112R/PD-1 immune checkpoint therapy.
Collapse
|
5
|
Dum D, Menz A, Völkel C, De Wispelaere N, Hinsch A, Gorbokon N, Lennartz M, Luebke AM, Hube-Magg C, Kluth M, Fraune C, Möller K, Bernreuther C, Lebok P, Clauditz TS, Jacobsen F, Sauter G, Uhlig R, Wilczak W, Steurer S, Minner S, Marx AH, Simon R, Burandt E, Krech T. Cytokeratin 7 and cytokeratin 20 expression in cancer: A tissue microarray study on 15,424 cancers. Exp Mol Pathol 2022; 126:104762. [PMID: 35390310 DOI: 10.1016/j.yexmp.2022.104762] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 01/15/2023]
Abstract
Combined analysis of cytokeratin 7 (CK7) and cytokeratin 20 (CK20) is often used for assessing the origin of metastatic cancer. To evaluate the diagnostic utility of CK7 and CK20, tissue microarrays containing 15,424 samples from 120 different tumor types and subtypes and 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry. CK7 positivity was seen in 52% (8.7% weak, 5.9% moderate, 37% strong) and CK20 positivity in 23% (5.1% weak, 3.4% moderate, 15% strong) of interpretable tumors. Of 8390 positive tumors, 1181 (14%) showed positivity for CK7 and CK20, 5380 (64%) showed positivity for CK7 alone, and 1829 (22%) showed positivity for CK20 alone. CK20 predominated in gastrointestinal tract, urothelial and Merkel cell carcinomas. CK7 was usually negative in prostate cancer and colorectal cancer. Combined evaluation of CK7/CK20 revealed the best diagnostic utility in CK20 positive tumors, where CK7 negativity is often linked to colorectal origin while CK7 positivity argues for urothelial origin or mucinous ovarian cancer. Associations with unfavorable tumor features were found for cytokeratin 7 loss in breast cancer of no special type, urothelial and renal cell carcinomas, for CK7 overexpression in high-grade serous ovarian and gastric cancer, and for CK20 overexpression in urothelial carcinoma. CK20 loss was linked to MSI in gastric (p = 0.0291) and colorectal adenocarcinoma (p < 0.0001). These analyses provide comprehensive data on the frequency of CK7 and CK20 immunostaining - alone or in combination - in human cancers. These data facilitate interpretation of CK7/CK20 immunostaining in cancers.
Collapse
Affiliation(s)
- David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cosima Völkel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Noémi De Wispelaere
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| |
Collapse
|
6
|
Ştefan AE, Gologan D, Leavitt MO, Muşat S, Pleşea IE, Stan LGR, Pleşea RM, Militaru M. Tissue microarrays - brief history, techniques and clinical future. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:1077-1083. [PMID: 34171057 PMCID: PMC8343478 DOI: 10.47162/rjme.61.4.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Introduction and Aim: There is a growing need for better, cheaper and faster histopathological diagnostic. The authors reviewed the main steps of the efforts towards the improvement of the pre-analytical phase of tissue processing for histological examination. Results: Since their introduction decades ago tissue microarrays (TMAs) proved their value by increasing efficiency, standardization and accuracy of many histological techniques, such as histochemistry, histoenzymology, immunohistochemistry, in situ hybridization, etc. By allowing the simultaneous analysis and comparison of multiple different tissues on a single histology slide (up to 1000 individual samples), TMAs are also having a significant economic advantage (consumables and labor). From its first description until recent years, the TMA techniques have evolved steadily but slowly despite many attempts to adapt it for clinical diagnostics. In this paper, we are reviewing the main techniques of obtaining TMA blocks from the beginning to the present day, as well as recent developments that are expanding their scope into high accuracy/efficiency clinical diagnostics. Conclusions: Considering recent developments, we believe that the prospect of high-throughput histology might be achievable in the not-so-distant future.
Collapse
|
7
|
Role of Synaptophysin, Chromogranin and CD56 in adenocarcinoma and squamous cell carcinoma of the lung lacking morphological features of neuroendocrine differentiation: a retrospective large-scale study on 1170 tissue samples. BMC Cancer 2021; 21:486. [PMID: 33933015 PMCID: PMC8088012 DOI: 10.1186/s12885-021-08140-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Synaptophysin, chromogranin and CD56 are recommended markers to identify pulmonary tumors with neuroendocrine differentiation. Whether the expression of these markers in pulmonary adenocarcinoma and pulmonary squamous cell carcinoma is a prognostic factor has been a matter of debate. Therefore, we investigated retrospectively a large cohort to expand the data on the role of synaptophysin, chromogranin and CD56 in non-small cell lung cancer lacking morphological features of neuroendocrine differentiation. METHODS A cohort of 627 pulmonary adenocarcinomas (ADC) and 543 squamous cell carcinomas (SqCC) lacking morphological features of neuroendocrine differentiation was assembled and a tissue microarray was constructed. All cases were stained with synaptophysin, chromogranin and CD56. Positivity was defined as > 1% positive tumor cells. Data was correlated with clinico-pathological features including overall and disease free survival. RESULTS 110 (18%) ADC and 80 (15%) SqCC were positive for either synaptophysin, chromogranin, CD56 or a combination. The most commonly positive single marker was synaptophysin. The least common positive marker was chromogranin. A combination of ≤2 neuroendocrine markers was positive in 2-3% of ADC and 0-1% of SqCC. There was no significant difference in overall survival in tumors with positivity for neuroendocrine markers neither in ADC (univariate: P = 0.4; hazard ratio [HR] = 0.867; multivariate: P = 0.5; HR = 0.876) nor in SqCC (univariate: P = 0.1; HR = 0.694; multivariate: P = 0.1, HR = 0.697). Likewise, there was no significant difference in disease free survival. CONCLUSIONS We report on a cohort of 1170 cases that synaptophysin, chromogranin and CD56 are commonly expressed in ADC and SqCC and that their expression has no impact on survival, supporting the current best practice guidelines.
Collapse
|
8
|
Albrecht T, Brinkmann F, Albrecht M, Lonsdorf AS, Mehrabi A, Hoffmann K, Kulu Y, Charbel A, Vogel MN, Rupp C, Köhler B, Springfeld C, Schirmacher P, Roessler S, Goeppert B. Programmed Death Ligand-1 (PD-L1) Is an Independent Negative Prognosticator in Western-World Gallbladder Cancer. Cancers (Basel) 2021; 13:1682. [PMID: 33918309 PMCID: PMC8038183 DOI: 10.3390/cancers13071682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibition of the programmed cell death protein-1/ligand-1 (PD-1/PD-L1) axis has opened a new era in the treatment of solid cancers. However, there is no data on the expression and relevance of PD-L1 in Western gallbladder cancer (GBC). We assessed PD-L1 immunohistochemically in 131 GBC patients as Tumor Proportion Score (TPS), Immune Cell Score (IC) and Combined Positivity Score (CPS). Tumor cells expressed PD-L1 in a subset of 14.7% GBC patients at a TPS cut-off of 1%. Higher PD-L1 levels above 10% and 25% TPS were reached in 4.7% and 3.1% of GBC cases, respectively. At a 10% cut-off, TPS was associated with distinct histomorphological subtypes and correlated with poor tumor differentiation. Survival analysis revealed a TPS above 10% to be a highly significant and independent negative prognosticator in GBC. PD-L1 expression was associated with increased CD4+, CD8+ and PD-1+ immune cell densities. In 14.8% of the cases, scattered immune cells expressed T-cell immunoreceptor with Ig and ITIM domains (TIGIT), which was correlated to tumoral expression of its ligand CD155. We here show that a high PD-L1 expression confers a negative prognostic value in Western-world GBC and highlight the TIGIT/CD155 immune checkpoint as a potential new target for GBC immunotherapy.
Collapse
Affiliation(s)
- Thomas Albrecht
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (T.A.); (F.B.); (A.C.); (P.S.); (S.R.)
- Liver Cancer Center Heidelberg (LCCH), 69120 Heidelberg, Germany; (A.M.); (K.H.); (C.R.); (B.K.); (C.S.)
| | - Fritz Brinkmann
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (T.A.); (F.B.); (A.C.); (P.S.); (S.R.)
- Liver Cancer Center Heidelberg (LCCH), 69120 Heidelberg, Germany; (A.M.); (K.H.); (C.R.); (B.K.); (C.S.)
| | - Michael Albrecht
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Anke S. Lonsdorf
- Department of Dermatology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Arianeb Mehrabi
- Liver Cancer Center Heidelberg (LCCH), 69120 Heidelberg, Germany; (A.M.); (K.H.); (C.R.); (B.K.); (C.S.)
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Katrin Hoffmann
- Liver Cancer Center Heidelberg (LCCH), 69120 Heidelberg, Germany; (A.M.); (K.H.); (C.R.); (B.K.); (C.S.)
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Yakup Kulu
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Alphonse Charbel
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (T.A.); (F.B.); (A.C.); (P.S.); (S.R.)
- Liver Cancer Center Heidelberg (LCCH), 69120 Heidelberg, Germany; (A.M.); (K.H.); (C.R.); (B.K.); (C.S.)
| | - Monika N. Vogel
- Diagnostic and Interventional Radiology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany;
| | - Christian Rupp
- Liver Cancer Center Heidelberg (LCCH), 69120 Heidelberg, Germany; (A.M.); (K.H.); (C.R.); (B.K.); (C.S.)
- Department of Internal Medicine IV, Gastroenterology and Hepatology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Bruno Köhler
- Liver Cancer Center Heidelberg (LCCH), 69120 Heidelberg, Germany; (A.M.); (K.H.); (C.R.); (B.K.); (C.S.)
- National Center for Tumor Diseases, Department of Medical Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Christoph Springfeld
- Liver Cancer Center Heidelberg (LCCH), 69120 Heidelberg, Germany; (A.M.); (K.H.); (C.R.); (B.K.); (C.S.)
- National Center for Tumor Diseases, Department of Medical Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (T.A.); (F.B.); (A.C.); (P.S.); (S.R.)
- Liver Cancer Center Heidelberg (LCCH), 69120 Heidelberg, Germany; (A.M.); (K.H.); (C.R.); (B.K.); (C.S.)
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (T.A.); (F.B.); (A.C.); (P.S.); (S.R.)
- Liver Cancer Center Heidelberg (LCCH), 69120 Heidelberg, Germany; (A.M.); (K.H.); (C.R.); (B.K.); (C.S.)
| | - Benjamin Goeppert
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (T.A.); (F.B.); (A.C.); (P.S.); (S.R.)
- Liver Cancer Center Heidelberg (LCCH), 69120 Heidelberg, Germany; (A.M.); (K.H.); (C.R.); (B.K.); (C.S.)
| |
Collapse
|
9
|
Overexpression of the TRIM24 E3 Ubiquitin Ligase is Linked to Genetic Instability and Predicts Unfavorable Prognosis in Prostate Cancer. Appl Immunohistochem Mol Morphol 2021; 29:e29-e38. [PMID: 33491944 DOI: 10.1097/pai.0000000000000901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Tripartite motif containing 24 (TRIM24) is a multifunctional protein involved in p53 degradation, chromatin binding, and transcriptional modulation of nuclear receptors. Emerging research has revealed that upregulation of TRIM24 in numerous tumor types is linked to poor prognosis, attributing an important role to TRIM24 in tumor biology. In order to better understand the role of TRIM24 in prostate cancer, we analyzed its immunohistochemical expression on a tissue microarray containing >17,000 prostate cancer specimens. TRIM24 immunostaining was detectable in 61% of 15,321 interpretable cancers, including low expression in 46% and high expression in 15% of cases. TRIM24 upregulation was associated with high Gleason grade, advanced pathologic tumor stage, lymph node metastasis, higher preoperative prostate-specific antigen level, increased cell proliferation as well as increased genomic instability, and predicted prognosis independent of clinicopathologic parameters available at the time of the initial biopsy (all P<0.0001). TRIM24 upregulation provides additional prognostic information in prostate cancer, particularly in patients with low Gleason grade tumors who may be eligible for active surveillance strategies, suggesting promising potential for TRIM24 in the routine diagnostic work-up of these patients.
Collapse
|
10
|
Kriegsmann K, Zgorzelski C, Muley T, Christopoulos P, von Winterfeld M, Herpel E, Goeppert B, Mechtersheimer G, Sinn P, Stenzinger A, Schirmacher P, Winter H, Eichinger M, Warth A, Kriegsmann M. Immunohistological expression of oestrogen receptor, progesterone receptor, mammaglobin, human epidermal growth factor receptor 2 and GATA-binding protein 3 in non-small-cell lung cancer. Histopathology 2020; 77:900-914. [PMID: 32634256 DOI: 10.1111/his.14203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
AIMS Non-small-cell lung cancer (NSCLC) and breast cancer are common entities. Staining for oestrogen receptor (ER), progesterone receptor (PgR), mammaglobin (MAMG) and GATA-binding protein 3 (GATA3) is frequently performed to confirm a mammary origin in the appropriate diagnostic setting. However, comprehensive data on the immunohistological expression of these markers in NSCLC are limited. Therefore, the aim of this study was to analyse a large cohort of NSCLCs and correlate the staining results with clinicopathological variables. METHODS AND RESULTS A tissue microarray was stained for ER, PgR, MAMG, human epidermal growth factor receptor 2 (HER2), and GATA3, and included 636 adenocarcinomas (ADCs), 536 squamous cell carcinomas (SqCCs), 65 large-cell-carcinomas, 34 pleomorphic carcinomas, and 20 large-cell neuroendocrine carcinomas. HER2 status was determined for immunohistochemically positive cases with chromogenic in-situ hybridisation. Markers with a proportion of ≥5% positive cases in ADC and SqCC were considered for survival analysis. Among ADCs, 62 (10%), 17 (3%), one (<1%), seven (1%), and 49 (8%) cases were positive for ER, PgR, MAMG, HER2, and GATA3, respectively. Among SqCCs, 10 (2%), 14 (3%), two (<1%) and 109 (20%) cases were positive for ER, PgR, HER2, and GATA3, but none of the samples showed positivity for MAMG. ER positivity was associated with ADC, female sex, smaller tumour size, and lower clinical stage. None of the markers had an impact on survival. CONCLUSION We report on ER, PgR, MAMG, HER2 and GATA3 expression in a large cohort of NSCLCs. Interpretation of these markers in the differential diagnostic setting should be based on a multimarker panel.
Collapse
Affiliation(s)
- Katharina Kriegsmann
- Department of Internal Medicine V, Haematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Thomas Muley
- Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research (DZL), Thoraxklinik at Heidelberg University, Heidelberg, Germany.,Translational Research Unit, Thoraxklinik at Heidelberg University, Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University, Heidelberg, Germany
| | | | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Peter Sinn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research (DZL), Thoraxklinik at Heidelberg University, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hauke Winter
- Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research (DZL), Thoraxklinik at Heidelberg University, Heidelberg, Germany.,Translational Research Unit, Thoraxklinik at Heidelberg University, Heidelberg, Germany.,Department of Thoracic Surgery, Thoraxklinik at Heidelberg University, Heidelberg, Germany
| | - Monika Eichinger
- Department of Radiology, Thoraxklinik at Heidelberg University, Heidelberg, Germany
| | - Arne Warth
- Institute of Pathology, Cytopathology, and Molecular Pathology, UEGP MVZ Gießen/Wetzlar/Limburg, Limburg, Germany
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research (DZL), Thoraxklinik at Heidelberg University, Heidelberg, Germany.,Translational Research Unit, Thoraxklinik at Heidelberg University, Heidelberg, Germany
| |
Collapse
|
11
|
Kriegsmann M, Haag C, Weis CA, Steinbuss G, Warth A, Zgorzelski C, Muley T, Winter H, Eichhorn ME, Eichhorn F, Kriegsmann J, Christopolous P, Thomas M, Witzens-Harig M, Sinn P, von Winterfeld M, Heussel CP, Herth FJF, Klauschen F, Stenzinger A, Kriegsmann K. Deep Learning for the Classification of Small-Cell and Non-Small-Cell Lung Cancer. Cancers (Basel) 2020; 12:cancers12061604. [PMID: 32560475 PMCID: PMC7352768 DOI: 10.3390/cancers12061604] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Reliable entity subtyping is paramount for therapy stratification in lung cancer. Morphological evaluation remains the basis for entity subtyping and directs the application of additional methods such as immunohistochemistry (IHC). The decision of whether to perform IHC for subtyping is subjective, and access to IHC is not available worldwide. Thus, the application of additional methods to support morphological entity subtyping is desirable. Therefore, the ability of convolutional neuronal networks (CNNs) to classify the most common lung cancer subtypes, pulmonary adenocarcinoma (ADC), pulmonary squamous cell carcinoma (SqCC), and small-cell lung cancer (SCLC), was evaluated. A cohort of 80 ADC, 80 SqCC, 80 SCLC, and 30 skeletal muscle specimens was assembled; slides were scanned; tumor areas were annotated; image patches were extracted; and cases were randomly assigned to a training, validation or test set. Multiple CNN architectures (VGG16, InceptionV3, and InceptionResNetV2) were trained and optimized to classify the four entities. A quality control (QC) metric was established. An optimized InceptionV3 CNN architecture yielded the highest classification accuracy and was used for the classification of the test set. Image patch and patient-based CNN classification results were 95% and 100% in the test set after the application of strict QC. Misclassified cases mainly included ADC and SqCC. The QC metric identified cases that needed further IHC for definite entity subtyping. The study highlights the potential and limitations of CNN image classification models for tumor differentiation.
Collapse
Affiliation(s)
- Mark Kriegsmann
- Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany; (C.H.); (G.S.); (C.Z.); (P.S.); (M.v.W.); (A.S.)
- Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany; (T.M.); (H.W.); (M.E.E.); (F.E.); (P.C.); (M.T.); (C.P.H.); (F.J.F.H.)
- Correspondence: (M.K.); (K.K.); Tel.: +49-6221-56-36930 (M.K.); +49-6221-56-37238 (K.K.)
| | - Christian Haag
- Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany; (C.H.); (G.S.); (C.Z.); (P.S.); (M.v.W.); (A.S.)
- Department Hematology, Oncology and Rheumatology, Heidelberg University, 69120 Heidelberg, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, Heidelberg University, 68782 Mannheim, Germany;
| | - Georg Steinbuss
- Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany; (C.H.); (G.S.); (C.Z.); (P.S.); (M.v.W.); (A.S.)
- Department Hematology, Oncology and Rheumatology, Heidelberg University, 69120 Heidelberg, Germany
| | - Arne Warth
- Institute of Pathology, Cytopathology, and Molecular Pathology, UEGP MVZ Gießen/Wetzlar/Limburg, 65549 Limburg, Germany;
| | - Christiane Zgorzelski
- Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany; (C.H.); (G.S.); (C.Z.); (P.S.); (M.v.W.); (A.S.)
| | - Thomas Muley
- Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany; (T.M.); (H.W.); (M.E.E.); (F.E.); (P.C.); (M.T.); (C.P.H.); (F.J.F.H.)
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, 69126 Heidelberg, Germany
| | - Hauke Winter
- Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany; (T.M.); (H.W.); (M.E.E.); (F.E.); (P.C.); (M.T.); (C.P.H.); (F.J.F.H.)
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, 69126 Heidelberg, Germany
| | - Martin E. Eichhorn
- Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany; (T.M.); (H.W.); (M.E.E.); (F.E.); (P.C.); (M.T.); (C.P.H.); (F.J.F.H.)
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, 69126 Heidelberg, Germany
| | - Florian Eichhorn
- Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany; (T.M.); (H.W.); (M.E.E.); (F.E.); (P.C.); (M.T.); (C.P.H.); (F.J.F.H.)
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, 69126 Heidelberg, Germany
| | - Joerg Kriegsmann
- Molecular Pathology Trier, 54296 Trier, Germany;
- Danube Private University Krems, 3500 Krems, Austria
| | - Petros Christopolous
- Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany; (T.M.); (H.W.); (M.E.E.); (F.E.); (P.C.); (M.T.); (C.P.H.); (F.J.F.H.)
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University, 69126 Heidelberg, Germany
| | - Michael Thomas
- Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany; (T.M.); (H.W.); (M.E.E.); (F.E.); (P.C.); (M.T.); (C.P.H.); (F.J.F.H.)
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University, 69126 Heidelberg, Germany
| | | | - Peter Sinn
- Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany; (C.H.); (G.S.); (C.Z.); (P.S.); (M.v.W.); (A.S.)
| | - Moritz von Winterfeld
- Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany; (C.H.); (G.S.); (C.Z.); (P.S.); (M.v.W.); (A.S.)
| | - Claus Peter Heussel
- Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany; (T.M.); (H.W.); (M.E.E.); (F.E.); (P.C.); (M.T.); (C.P.H.); (F.J.F.H.)
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, Heidelberg University, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Thoraxklinik, Heidelberg University, 69120 Heidelberg, Germany
| | - Felix J. F. Herth
- Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany; (T.M.); (H.W.); (M.E.E.); (F.E.); (P.C.); (M.T.); (C.P.H.); (F.J.F.H.)
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, Heidelberg University, 69126 Heidelberg, Germany
| | | | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany; (C.H.); (G.S.); (C.Z.); (P.S.); (M.v.W.); (A.S.)
- Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany; (T.M.); (H.W.); (M.E.E.); (F.E.); (P.C.); (M.T.); (C.P.H.); (F.J.F.H.)
| | - Katharina Kriegsmann
- Department Hematology, Oncology and Rheumatology, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: (M.K.); (K.K.); Tel.: +49-6221-56-36930 (M.K.); +49-6221-56-37238 (K.K.)
| |
Collapse
|
12
|
Detection of Putative Stem-cell Markers in Invasive Ductal Carcinoma of the Breast by Immunohistochemistry: Does It Improve Prognostic/Predictive Assessments? Appl Immunohistochem Mol Morphol 2019; 26:760-768. [PMID: 28719381 PMCID: PMC6250294 DOI: 10.1097/pai.0000000000000513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Experimental evidences from the last 2 decades supports the existence of a special type of neoplastic cell with stem-like features [cancer stem cell (CSC)] and their role in the pathophysiology and therapeutic resistance of breast cancer. However, their clinical value in human breast cancer has not been fully determined. Materials and Methods: An immunohistochemistry panel of 10 putative CSC markers (CD34, C-KIT, CD10, SOX-2, OCT 3/4, p63, CD24, CD44, CD133, and ESA/EPCAM) was applied to 74 cases of breast cancer, followed in a Regional Cancer Center of Minas Gerais State, Brazil, from 2004 to 2006. Possible associations between CSC markers and classic variables of clinicopathologic relevance were investigated. Results: The most frequently positive CSC markers were CD44, CD24, CD133, and ESA (the others were present in <15% of the cases). Two CSC profiles were defined: CD24−/CD44+ (CSC-1) and CD133+/ESA+ (CSC-2). CSC-1 was significantly associated to patients older than 40 years, tumors of <2.0 cm in diameter, early clinical stages (P<0.05), and increased death risk of 4 times (P=0.03; 95% confidence interval, 1.09-14.41). CSC-2 was related to increased relapse risk of 3.75 times (P=0.04; 95% confidence interval, 1.02-13.69). Conclusion: The detection of the most frequently positive CSC markers by immunohistochemistry is of clinicopathologic and prognostic relevance.
Collapse
|
13
|
Kriegsmann K, Cremer M, Zgorzelski C, Harms A, Muley T, Winter H, Kazdal D, Warth A, Kriegsmann M. Agreement of CK5/6, p40, and p63 immunoreactivity in non-small cell lung cancer. Pathology 2019; 51:240-245. [PMID: 30798982 DOI: 10.1016/j.pathol.2018.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
Histological subtyping of non-small cell lung cancer (NSCLC) is of utmost importance for therapy stratification. Common immunohistochemical markers to identify squamous lineage are CK5/6, p40, and p63. Although p40 is considered the gold standard by current guidelines, the agreement of all three markers is an important aspect for tumours more difficult to classify. A total of 1244 NSCLC including 569 squamous cell carcinomas (SqCC) and 675 adenocarcinomas were assembled on a tissue microarray and stained with CK5/6, p40, p63, TTF-1, and Napsin-A. Sensitivity and specificity for squamous lineage markers as well as agreement of CK5/6, p40 and p63 were calculated. Sensitivity of CK5/6, p40, and p63 for SqCC was 93%, 94%, and 94% and specificity was 98%, 97%, and 84%, respectively. Positivity for two of these markers was found in at least in 90% of SqCC. Highest agreement was observed for p40 and p63 (Cohen's kappa 0.80). We report a similar sensitivity of CK5/6, p40, and p63, but a decreased specificity of p63 as compared to CK5/6 and p40 for the identification of squamous lineage. Our results support the use of either CK5/6 or p40 over p63 in the routine diagnostic setting.
Collapse
Affiliation(s)
- Katharina Kriegsmann
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Cremer
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Alexander Harms
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research, Germany
| | - Thomas Muley
- Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research, Germany; Translational Research Unit, Thoraxklinik at Heidelberg University, Heidelberg, Germany
| | - Hauke Winter
- Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research, Germany; Department of Thoracic Surgery, Thoraxklinik at Heidelberg University, Heidelberg, Germany
| | - Daniel Kazdal
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research, Germany
| | - Arne Warth
- Institute of Pathology, Cytopathology, and Molecular Pathology, UEGP, MVZ, Gießen, Wetzlar, Limburg, Germany
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
14
|
Casadonte R, Kriegsmann M, Perren A, Baretton G, Deininger S, Kriegsmann K, Welsch T, Pilarsky C, Kriegsmann J. Development of a Class Prediction Model to Discriminate Pancreatic Ductal Adenocarcinoma from Pancreatic Neuroendocrine Tumor by MALDI Mass Spectrometry Imaging. Proteomics Clin Appl 2018; 13:e1800046. [DOI: 10.1002/prca.201800046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/05/2018] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mark Kriegsmann
- Institute of PathologyUniversity of Heidelberg Heidelberg 69120 Germany
| | - Aurel Perren
- Institute of PathologyUniversity of Bern Bern 3012 Switzerland
| | - Gustavo Baretton
- Institute of PathologyUniversity Hospital Carl Gustav Carus at the Technical University of Dresden Dresden 01307 Germany
| | | | - Katharina Kriegsmann
- Department of HematologyOncology and RheumatologyUniversity of Heidelberg Heidelberg 69120 Germany
| | - Thilo Welsch
- Institute of PathologyUniversity Hospital Carl Gustav Carus at the Technical University of Dresden Dresden 01307 Germany
| | - Christian Pilarsky
- Institute of PathologyUniversity Hospital Carl Gustav Carus at the Technical University of Dresden Dresden 01307 Germany
| | - Jörg Kriegsmann
- Proteopath GmbH Trier 54296 Germany
- MVZ for HistologyCytology and Molecular Diagnostics Trier 54296 Germany
| |
Collapse
|
15
|
Mao Y, Feng Q, Zheng P, Yang L, Zhu D, Chang W, Ji M, He G, Xu J. Low tumor infiltrating mast cell density confers prognostic benefit and reflects immunoactivation in colorectal cancer. Int J Cancer 2018; 143:2271-2280. [PMID: 29873076 DOI: 10.1002/ijc.31613] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/16/2018] [Accepted: 05/14/2018] [Indexed: 01/01/2023]
Abstract
The role of mast cells (MCs) in colorectal cancer (CRC) progression was controversial. Thus, our study was designed to evaluate the prognostic value of MCs as well as their correlation with immune microenvironment. A retrospective cohort of CRC patients of stages I-IV was enrolled in our study. Consecutive patients (854) were divided into training set (427 patients) and validation set (427 patients) randomly. The findings were further validated in a GEO cohort, GSE39582 (556 patients). The mast cell density (MCD) was measured by immunohistochemical staining of tryptase or by CIBERSORT algorithm. Low MCD predicted prolonged overall survival (OS) in training and validation set. Moreover, MCD was identified as an independent prognostic indicator in both sets. Better stratification for CRC prognosis can be achieved by building a MCD based nomogram. The prognostic role of MCD was further validated in GSE39582. In addition, MCD predicted improved survival in stages II and III CRC patients receiving adjuvant chemotherapy (ACT). Multiple immune pathways were enriched in low MCD group while cytokines/chemokines promoting anti-tumor immunity were highly expressed in such group. Furthermore, MCD was negatively correlated with CD8+ T cells infiltration. In conclusion, MCD was identified as an independent prognostic factor, as well as a potential biomarker for ACT benefit in stages II and III CRC. Better stratification of CRC prognosis could be achieved by building a MCD based nomogram. Moreover, immunoactivation in low MCD tumors may contributed to improved prognosis.
Collapse
Affiliation(s)
- Yihao Mao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qingyang Feng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Zheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liangliang Yang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dexiang Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenju Chang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meiling Ji
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guodong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Lebok P, Huber J, Burandt EC, Lebeau A, Marx AH, Terracciano L, Heilenkötter U, Jänicke F, Müller V, Paluchowski P, Geist S, Wilke C, Simon R, Sauter G, Quaas A. Loss of membranous VEGFR1 expression is associated with an adverse phenotype and shortened survival in breast cancer. Mol Med Rep 2016; 14:1443-50. [PMID: 27357606 PMCID: PMC4940099 DOI: 10.3892/mmr.2016.5430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/15/2016] [Indexed: 01/28/2023] Open
Abstract
Angiogenesis is a key process in tumor growth and progression, which is controlled by vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs). In order to better understand the prevalence and prognostic value of VEGFR1 expression in breast cancer, a tissue microarray containing >2,100 breast cancer specimens, with clinical follow‑up data, was analyzed by immunohistochemistry using an antibody directed against the membrane‑bound full‑length receptor protein. The results demonstrated that membranous VEGFR1 staining was detected in all (5 of 5) normal breast specimens. In carcinoma specimens, membranous staining was negative in 3.1%, weak in 6.3%, moderate in 10.9%, and strong in 79.7% of the 1,630 interpretable tissues. Strong staining was significantly associated with estrogen receptor and progesterone receptor expression, but was inversely associated with advanced tumor stage (P=0.0431), high Bloom-Richardson-Ellis Score for Breast Cancer grade and low Ki67 labeling index (both P<0.0001). Cancers with moderate to strong (high) VEGFR1 expression were associated with significantly improved overall survival, as compared with tumors exhibiting negative or weak (low) expression (P=0.0015). This association was also detected in the subset of nodal‑positive cancers (P=0.0018), and in the subset of 185 patients who had received tamoxifen as the sole therapy (P=0.001). In conclusion, these data indicated that membrane‑bound VEGFR1 is frequently expressed in normal and cancerous breast epithelium. In addition, reduced or lost VEGFR1 expression may serve as a marker for poor prognosis in patients with breast cancer, who might not optimally benefit from endocrine therapy.
Collapse
Affiliation(s)
- Patrick Lebok
- Institute of Pathology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Julia Huber
- Institute of Pathology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Eike-Christian Burandt
- Institute of Pathology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Annette Lebeau
- Institute of Pathology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Andreas Holger Marx
- Institute of Pathology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, 4056 Basel, Switzerland
| | - Uwe Heilenkötter
- Department of Gynaecology, Hospital Itzehoe, D-25524 Itzehoe, Germany
| | - Fritz Jänicke
- Department of Gynaecology, Hospital Pinneberg, D-25421 Pinneberg, Germany
| | - Volkmar Müller
- Department of Gynaecology, Hospital Pinneberg, D-25421 Pinneberg, Germany
| | - Peter Paluchowski
- Department of Gynaecology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Stefan Geist
- Department of Gynaecology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Christian Wilke
- Department of Gynaecology, Hospital Elmshorn, D-25337 Elmshorn, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Centre Hamburg‑Eppendorf, D‑20246 Hamburg, Germany
| | - Alexander Quaas
- Institute for Pathology, University of Cologne, D‑50937 Cologne, Germany
| |
Collapse
|
17
|
Quality Management of the Immunohistochemistry Laboratory: A Practical Guide. Appl Immunohistochem Mol Morphol 2016; 23:471-80. [PMID: 25203427 DOI: 10.1097/pai.0000000000000111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Governmental regulations and most published guidelines do not provide specific guidance on implementation of quality management (QM) programs for immunohistochemistry (IHC) assays in Anatomic Pathology. QM of IHC consists of 3 main components: quality control, quality assurance, and quality improvement initiatives, each entailing distinctive but interrelated objectives. Discussion of the principles and some specific practices involved in these phases of QM of the IHC laboratory are therefore offered in this review, with an admitted emphasis on pragmatism.
Collapse
|
18
|
|
19
|
Reconsidering the diagnostic and prognostic utility of LN-2 for undifferentiated pleomorphic sarcoma and atypical fibroxanthoma. Am J Dermatopathol 2013; 35:176-9. [PMID: 23000905 DOI: 10.1097/dad.0b013e318265fb9e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The topic of distinguishing atypical fibroxanthoma (AFX) from undifferentiated pleomorphic sarcoma (UPS), formerly malignant fibrous histiocytoma, is highly controversial. Although their clinical behavior is disparate, AFX and UPS commonly appear nearly identical on routine histopathologic examination. Although conceptually useful, subcategorization of UPS into superficial (confined to the dermis and subcutaneous tissue) and deep (involvement of fascia and deeper structures) types has not improved our ability to differentiate UPS from AFX. Numerous authors have purported LN-2 (CD74) immunopositivity as able to distinguish UPS from AFX and to predict those rare AFX likely to behave aggressively, although only a single prior study has been dedicated to evaluating this marker. We performed LN-2 staining of 14 AFX, 8 superficial UPS, and 65 deep UPS specimens using an identical protocol as described by prior authors. Of the 73 total UPS specimens, only 1 (1.4%) stained strongly with LN-2, as compared with 3 of 14 (21%) AFX (P = 0.012). One of 2 (50%) clinically aggressive AFX tumors that later exhibited both local recurrence and metastasis stained strongly for LN-2, whereas 2 of 12 (17%) of the more indolent tumors stained strongly with this marker (P = 0.40). Our data do not replicate prior reports of LN-2 as a sensitive and specific marker for UPS, or as indicative of prognosis for AFX, and therefore does not support the use of LN-2 as either a diagnostic or prognostic marker.
Collapse
|
20
|
Heel K, Tabone T, Röhrig KJ, Maslen PG, Meehan K, Grimwade LF, Erber WN. Developments in the immunophenotypic analysis of haematological malignancies. Blood Rev 2013; 27:193-207. [PMID: 23845589 DOI: 10.1016/j.blre.2013.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunophenotyping is the method by which antibodies are used to detect cellular antigens in clinical samples. Although the major role is in the diagnosis and classification of haematological malignancies, applications have expanded over the past decade. Immunophenotyping is now used extensively for disease staging and monitoring, to detect surrogate markers of genetic aberrations, to identify potential immuno-therapeutic targets and to aid prognostic prediction. This expansion in applications has resulted from developments in antibodies, methodology, automation and data handling. In this review we describe recent advances in both the technology and applications for the analysis of haematological malignancies. We highlight the importance of the expanding repertoire of testing capability for diagnostic, prognostic and therapeutic applications. The impact and significance of immunophenotyping in the assessment of haematological neoplasms are evident.
Collapse
Affiliation(s)
- Kathy Heel
- Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | | | | | | | |
Collapse
|
21
|
Gustavson MD, Rimm DL, Dolled-Filhart M. Tissue microarrays: leaping the gap between research and clinical adoption. Per Med 2013; 10:441-451. [PMID: 29758838 DOI: 10.2217/pme.13.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The use of tissue microarrays (TMAs) in the preclinical and translational research settings has become ubiquitous as they allow for high-throughput in situ biomarker analysis of hundreds of patient samples, with time and cost efficiency. Coupled with advanced imaging and image-analysis technologies that allow for objective and standardized biomarker expression assessment, TMAs have become critical tools for the development and validation of clinically meaningful biomarker diagnostic assays. However, their diagnostic use in the clinical laboratory setting is limited due to the need for conventional whole-section tissue assessment used for routine diagnostic purposes. In this article, after reviewing TMA basics and their translational and clinical research applications, we will focus on the use of TMAs for robust assay development and quality control in the clinical laboratory setting, as well as provide insights into how TMAs may serve well in the clinical setting as assay performance and quantification controls.
Collapse
Affiliation(s)
| | - David L Rimm
- Yale University School of Medicine, New Haven, CT, USA
| | - Marisa Dolled-Filhart
- Clinical Development Laboratory, Merck & Company, Office: RY50-1E-144, Maildrop RY 50-100, 126 Lincoln Avenue, Rahway, NJ 07065, USA
| |
Collapse
|
22
|
Dolled-Filhart MP, Gustavson MD. Tissue microarrays and quantitative tissue-based image analysis as a tool for oncology biomarker and diagnostic development. ACTA ACUST UNITED AC 2012; 6:569-83. [DOI: 10.1517/17530059.2012.708336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Wachter DL, Kristiansen G, Soll C, Hellerbrand C, Breuhahn K, Fritzsche F, Agaimy A, Hartmann A, Riener MO. Insulin-like growth factor II mRNA-binding protein 3 (IMP3) expression in hepatocellular carcinoma. A clinicopathological analysis with emphasis on diagnostic value. Histopathology 2012; 60:278-86. [PMID: 22211286 DOI: 10.1111/j.1365-2559.2011.04091.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIMS Patients with hepatocellular carcinoma (HCC) usually present with advanced disease and rarely qualify for curative therapy. Immunohistochemical markers that help to discriminate benign from malignant processes early, and that have prognostic significance, would be useful. Expression of the oncofetal protein insulin-like growth factor II mRNA-binding protein 3 (IMP3) in malignant cells of different tumour types correlates with reduced overall survival. METHODS AND RESULTS Tissue microarrays (TMAs) containing 55 normal liver samples, 365 HCCs (122 with corresponding non-tumorous liver), 10 hepatocellular adenomas, 13 focal nodular hyperplasias and nine dysplastic nodules from western European patients were stained for IMP3. IMP3 was analysed in 61 core needle biopsies and findings were compared to glypican-3 and CD34. HCCs in TMAs were strongly positive for IMP3 in 18.4% of cases compared to absent expression in normal and non-tumorous liver tissue and benign liver tumours. Patients with IMP3 expression in HCCs showed significantly poorer overall survival in multivariate analysis (P = 0.044). Of the 61 core needle biopsies analysed, 32 (52.5%) of the HCCs were IMP3-positive. CONCLUSIONS In core needle biopsies, IMP3 expression seems to be of limited use as a single marker for the diagnosis of HCC, given a sensitivity of 52%, but it may be helpful in combination with other markers.
Collapse
Affiliation(s)
- David L Wachter
- Institute of Pathology, University Hospital Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|