1
|
Farooq M, Simoes Eugénio M, Piquet-Pellorce C, Dion S, Raguenes-Nicol C, Santamaria K, Kara-Ali GH, Larcher T, Dimanche-Boitrel MT, Samson M, Le Seyec J. Receptor-interacting protein kinase-1 ablation in liver parenchymal cells promotes liver fibrosis in murine NASH without affecting other symptoms. J Mol Med (Berl) 2022; 100:1027-1038. [PMID: 35476028 DOI: 10.1007/s00109-022-02192-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022]
Abstract
Non-alcoholic steatohepatitis (NASH), a chronic liver disease that emerged in industrialized countries, can further progress into liver fibrosis, cirrhosis, and hepatocellular carcinoma. In the next decade, NASH is predicted to become the leading cause of liver transplantation, the only current interventional therapeutic option. Hepatocyte death, triggered by different death ligands, plays key role in its progression. Previously, we showed that the receptor-interacting protein kinase-1 (RIPK1) in hepatocytes exhibits a protective role in ligand-induced death. Now, to decipher the role of RIPK1 in NASH, Ripk1LPC-KO mice, deficient for RIPK1 only in liver parenchymal cells, and their wild-type littermates (Ripk1fl/fl) were fed for 3, 5, or 12 weeks with high-fat high-cholesterol diet (HFHCD). The main clinical signs of NASH were analyzed to compare the pathophysiological state established in mice. Most of the symptoms evolved similarly whatever the genotype, whether it was the increase in liver to body weight ratio, the steatosis grade or the worsening of liver damage revealed by serum transaminase levels. In parallel, inflammation markers followed the same kinetics with significant equivalent inductions of cytokines (hepatic mRNA levels and blood cytokine concentrations) and a main peak of hepatic infiltration of immune cells at 3 weeks of HFHCD. Despite this identical inflammatory response, more hepatic fibrosis was significantly evidenced at week 12 in Ripk1LPC-KO mice. This coincided with over-induced rates of transcripts of genes implied in fibrosis development (Tgfb1, Tgfbi, Timp1, and Timp2) in Ripk1LPC-KO animals. In conclusion, our results show that RIPK1 in hepatocyte limits the progression of liver fibrosis during NASH.
Collapse
Affiliation(s)
- Muhammad Farooq
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.,Department of Clinical Sciences, College of Veterinary and Animal Sciences, University of Veterinary and Animal Sciences, Jhang, Lahore, Pakistan
| | - Mélanie Simoes Eugénio
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Claire Piquet-Pellorce
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Sarah Dion
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Céline Raguenes-Nicol
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Kathleen Santamaria
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Ghania Hounana Kara-Ali
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | | | - Marie-Thérèse Dimanche-Boitrel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Michel Samson
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| | - Jacques Le Seyec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| |
Collapse
|
2
|
Xu J, Nie N, Wu B, Li Y, Gong L, Yao X, Zou X, Ouyang H. The personalized application of biomaterials based on age and sexuality specific immune responses. Biomaterials 2021; 278:121177. [PMID: 34653933 DOI: 10.1016/j.biomaterials.2021.121177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022]
Abstract
Although biomaterials are widely utilized in clinics, it still follows the "one-fits-all" strategy. Biological variables such as age and sexuality have an impact on the host immune response and are not fully considered in the practice guidelines of the biomaterial implantation. In this study, we investigated the immuno-material interactions of six commonly used biomaterials (agarose, alginate, chitosan, CMC, GelMA and collagen type I) and constructed a population (with different ages and sexes) based transcriptome atlas. Protein and polysaccharide-based biomaterials elicited distinctive immune responses that protein-based materials preferred the NKT pathway to activate innate and adaptive immune response, whereas polysaccharide-based materials activated the cDCs to present antigen. The atlas further revealed the sex/age-related variabilities on the immune response followed by the polysaccharide treatment. As for sex bias, alginate and agarose stimulation significantly increased the proportion of naive CD4+ T cells in the female group, accompanied by the Th1 differentiation tendency, compared to the male group. Age-biased transcript showed alginate and chitosan would impair the extracellular matrix remodeling and up-regulate the apoptosis process in the elderly groups, compared to the young group. More attentions on the ingredient, age and sexuality effect of biomaterial implants should be paid during the clinical practice, especially for the polysaccharide-based materials. This experimental result is of great significance for the selection of biomaterials, particularly the blood contact materials, such as vessel or cardiac device, drug vehicles and hemostatic materials.
Collapse
Affiliation(s)
- Jiaqi Xu
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Nanfang Nie
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingbing Wu
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yu Li
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Gong
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xudong Yao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xiaohui Zou
- Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
3
|
Chi M, Ma K, Li Y, Quan M, Han Z, Ding Z, Liang X, Zhang Q, Song L, Liu C. Immunological Involvement of MicroRNAs in the Key Events of Systemic Lupus Erythematosus. Front Immunol 2021; 12:699684. [PMID: 34408748 PMCID: PMC8365877 DOI: 10.3389/fimmu.2021.699684] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an archetype autoimmune disease characterized by a myriad of immunoregulatory abnormalities that drives injury to multiple tissues and organs. Due to the involvement of various immune cells, inflammatory cytokines, and related signaling pathways, researchers have spent a great deal of effort to clarify the complex etiology and pathogenesis of SLE. Nevertheless, current understanding of the pathogenesis of SLE is still in the early stages, and available nonspecific treatment options for SLE patients remain unsatisfactory. First discovered in 1993, microRNAs (miRNAs) are small RNA molecules that control the expression of 1/3 of human genes at the post-transcriptional level and play various roles in gene regulation. The aberrant expression of miRNAs in SLE patients has been intensively studied, and further studies have suggested that these miRNAs may be potentially relevant to abnormal immune responses and disease progression in SLE. The aim of this review was to summarize the specific miRNAs that have been observed aberrantly expressed in several important pathogenetic processes in SLE, such as DCs abnormalities, overactivation and autoantibody production of B cells, aberrant activation of CD4+ T cells, breakdown of immune tolerance, and abnormally increased production of inflammatory cytokines. Our summary highlights a novel perspective on the intricate regulatory network of SLE, which helps to enrich our understanding of this disorder and ignite future interest in evaluating the molecular regulation of miRNAs in autoimmunity SLE.
Collapse
Affiliation(s)
- Mingxuan Chi
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University, Suita, Japan
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Quan
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaolun Ding
- Department of Emergency Surgery, Shannxi Provincial People's Hospital, Xi'an, China
| | - Xin Liang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinxiu Zhang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| |
Collapse
|
4
|
Vasseur P, Dion S, Filliol A, Genet V, Lucas-Clerc C, Jean-Philippe G, Silvain C, Lecron JC, Piquet-Pellorce C, Samson M. Endogenous IL-33 has no effect on the progression of fibrosis during experimental steatohepatitis. Oncotarget 2018; 8:48563-48574. [PMID: 28611297 PMCID: PMC5564708 DOI: 10.18632/oncotarget.18335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/15/2017] [Indexed: 01/01/2023] Open
Abstract
Interleukin (IL)-33 has been recently reported to be strongly pro-fibrogenic in various models of liver disease. Our aim was to study the role of endogenous IL-33 in a diet-induced model of steatohepatitis. IL-33 deficient mice and wild type (WT) littermates received a high-fat diet (HFD), or a standard diet for 12 weeks. The HFD-induced steatohepatitis was associated with an upregulation of IL-33 transcripts and protein. An insulin tolerance test revealed lower systemic insulin sensitivity in IL-33-/—HFD mice than in WT-HFD mice. Nevertheless, IL-33 deficiency did not affect the severity of liver inflammation by histological and transcriptomic analyses, nor the quantity of liver fibrosis. Livers from HFD mice had more myeloid populations, markedly fewer NKT cells and higher proportion of ST2+ Treg cells and ST2+ type 2 innate lymphoid cells (ILC2), all unaffected by IL-33 deficiency. In conclusion, deficiency of endogenous IL-33 does not affect the evolution of experimental diet-induced steatohepatitis towards liver fibrosis.
Collapse
Affiliation(s)
- Philippe Vasseur
- Service d'Hépato-Gastroentérologie, Centre Hospitalier Nord Deux-Sèvres, Thouars, France.,Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, Poitiers, France
| | - Sarah Dion
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Santé Environnement & Travail, Université de Rennes, Rennes, France
| | - Aveline Filliol
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Santé Environnement & Travail, Université de Rennes, Rennes, France
| | - Valentine Genet
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Santé Environnement & Travail, Université de Rennes, Rennes, France
| | - Catherine Lucas-Clerc
- Service de Biochimie, Centre Hospitalier Universitaire, Rennes, Université de Rennes, Rennes, France
| | - Girard Jean-Philippe
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Christine Silvain
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, Poitiers, France.,Service d'Hépato-Gastroentérologie, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Jean-Claude Lecron
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, Poitiers, France.,Service d'Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Claire Piquet-Pellorce
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Santé Environnement & Travail, Université de Rennes, Rennes, France
| | - Michel Samson
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Santé Environnement & Travail, Université de Rennes, Rennes, France
| |
Collapse
|
5
|
Noel G, Arshad MI, Filliol A, Genet V, Rauch M, Lucas-Clerc C, Lehuen A, Girard JP, Piquet-Pellorce C, Samson M. Ablation of interaction between IL-33 and ST2+ regulatory T cells increases immune cell-mediated hepatitis and activated NK cell liver infiltration. Am J Physiol Gastrointest Liver Physiol 2016; 311:G313-23. [PMID: 27340126 DOI: 10.1152/ajpgi.00097.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/30/2016] [Indexed: 01/31/2023]
Abstract
The IL-33/ST2 axis plays a protective role in T-cell-mediated hepatitis, but little is known about the functional impact of endogenous IL-33 on liver immunopathology. We used IL-33-deficient mice to investigate the functional effect of endogenous IL-33 in concanavalin A (Con A)-hepatitis. IL-33(-/-) mice displayed more severe Con A liver injury than wild-type (WT) mice, consistent with a hepatoprotective effect of IL-33. The more severe hepatic injury in IL-33(-/-) mice was associated with significantly higher levels of TNF-α and IL-1β and a larger number of NK cells infiltrating the liver. The expression of Th2 cytokines (IL-4, IL-10) and IL-17 was not significantly varied between WT and IL-33(-/-) mice following Con A-hepatitis. The percentage of CD25(+) NK cells was significantly higher in the livers of IL-33(-/-) mice than in WT mice in association with upregulated expression of CXCR3 in the liver. Regulatory T cells (Treg cells) strongly infiltrated the liver in both WT and IL-33(-/-) mice, but Con A treatment increased their membrane expression of ST2 and CD25 only in WT mice. In vitro, IL-33 had a significant survival effect, increasing the total number of splenocytes, including B cells, CD4(+) and CD8(+) T cells, and the frequency of ST2(+) Treg cells. In conclusion, IL-33 acts as a potent immune modulator protecting the liver through activation of ST2(+) Treg cells and control of NK cells.
Collapse
Affiliation(s)
- Gregory Noel
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 CNRS-US18 Inserm, Rennes, France
| | - Muhammad Imran Arshad
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 CNRS-US18 Inserm, Rennes, France
| | - Aveline Filliol
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 CNRS-US18 Inserm, Rennes, France
| | - Valentine Genet
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 CNRS-US18 Inserm, Rennes, France
| | - Michel Rauch
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 CNRS-US18 Inserm, Rennes, France
| | - Catherine Lucas-Clerc
- Université de Rennes 1, Rennes, France; Service de Biochimie CHU Rennes, Université de Rennes 1; Rennes, France
| | - Agnès Lehuen
- Inserm UMRS 1016-CNRS UMR 8104, Institut Cochin, Université Paris, Descartes, France; and
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique (IPBS-CNRS), Université de Toulouse, Toulouse, France
| | - Claire Piquet-Pellorce
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 CNRS-US18 Inserm, Rennes, France
| | - Michel Samson
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 CNRS-US18 Inserm, Rennes, France;
| |
Collapse
|
6
|
Beristain‐Covarrubias N, Canche‐Pool E, Gomez‐Diaz R, Sanchez‐Torres LE, Ortiz‐Navarrete V. Reduced iNKT cells numbers in type 1 diabetes patients and their first-degree relatives. Immun Inflamm Dis 2015; 3:411-9. [PMID: 26734463 PMCID: PMC4693717 DOI: 10.1002/iid3.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/07/2015] [Accepted: 08/04/2015] [Indexed: 01/23/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is characterized by the specific destruction of insulin-producing pancreatic β cells. Invariant natural killer T (iNKT) cells have been associated with development of T1D. Class I MHC-restricted T cell-associated molecule (CRTAM) is expressed on activated iNKT, CD8(+), and CD4(+) T cells, and it is associated with the pro-inflammatory profiles of these cells. Crtam gene expression in CD3(+) lymphocytes from non-obese diabetic (NOD) mice is associated with T1D onset. However, expression of CRTAM on T cells from patients with T1D has not yet been evaluated. We compared iNKT cell (CD3(+)Vα24(+)Vβ11(+)) numbers and CRTAM expression in a Mexican population with recent-onset T1D and their first-degree relatives with control families. Remarkably, we found lower iNKT cell numbers in T1D families, and we identified two iNKT cell populations in some of the families. One iNKT cell population expressed high iTCR levels (iNKT(hi)), whereas another expressed low levels (iNKT(lo)) and also expressed CRTAM. These findings support a probable genetic determinant of iNKT cell numbers and a possible role for these cells in T1D development. This study also suggests that CRTAM identifies recently activated iNKT lymphocytes.
Collapse
Affiliation(s)
| | - Elsy Canche‐Pool
- Immunology LaboratoryCenter for Regional Investigations “Dr. Hideyo Noguchi”MéridaMexico
- Department of Immunology, National School of Biological ScienceNational Polytechnic InstituteMexico CityMexico
| | - Rita Gomez‐Diaz
- Research Unit on Clinical Epidemiology (UMAE), Specialty Hospital, National Medical CenterMexican Social Security InstituteMexico CityMexico
| | - Luvia E. Sanchez‐Torres
- Department of Immunology, National School of Biological ScienceNational Polytechnic InstituteMexico CityMexico
| | - Vianney Ortiz‐Navarrete
- Department of Molecular BiomedicineCenter for Research and Advanced Studies (CINVESTAV)Mexico CityMexico
| |
Collapse
|
7
|
Arshad MI, Guihard P, Danger Y, Noel G, Le Seyec J, Boutet MA, Richards CD, L'Helgoualc'h A, Genet V, Lucas-Clerc C, Gascan H, Blanchard F, Piquet-Pellorce C, Samson M. Oncostatin M induces IL-33 expression in liver endothelial cells in mice and expands ST2+CD4+ lymphocytes. Am J Physiol Gastrointest Liver Physiol 2015; 309:G542-53. [PMID: 26251474 DOI: 10.1152/ajpgi.00398.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/22/2015] [Indexed: 01/31/2023]
Abstract
Interleukin (IL)-33 is crucially involved in liver pathology and drives hepatoprotective functions. However, the regulation of IL-33 by cytokines of the IL-6 family, including oncostatin M (OSM) and IL-6, is not well studied. The aim of the present study was to determine whether OSM mediates regulation of IL-33 expression in liver cells. Intramuscular administration in mice of an adenovirus encoding OSM (AdOSM) leads to increase in expression of OSM in muscles, liver, and serum of AdOSM-infected mice compared with control mice. The increase of circulating OSM markedly regulated mRNA of genes associated with blood vessel biology, chemotaxis, cellular death, induction of cell adhesion molecules, and the alarmin cytokine IL-33 in liver. Steady-state IL-33 mRNA was upregulated by OSM at an early phase (8 h) following AdOSM infection. At the protein level, the expression of IL-33 was significantly induced in liver endothelial cells [liver sinusoidal endothelial cells (LSEC) and vascular endothelial cells] with a peak at 8 days post-AdOSM infection in mice. In addition, we found OSM-stimulated human microvascular endothelial HMEC-1 cells and human LSEC/TRP3 cells showed a significant increase in expression of IL-33 mRNA in a dose-dependent manner in cell culture. The OSM-mediated overexpression of IL-33 was associated with the activation/enrichment of CD4(+)ST2(+) cells in liver of AdOSM-infected mice compared with adenovirus encoding green fluorescent protein-treated control mice. In summary, these data suggest that the cytokine OSM regulates the IL-33 expression in liver endothelial cells in vivo and in HMEC-1/TRP3 cells in vitro and may specifically expand the target CD4(+)ST2(+) cells in liver.
Collapse
Affiliation(s)
- Muhammad Imran Arshad
- Institut National de la Santé et de la Recherche Médicale, U1085, Institut de Recherche Santé Environnement et Travail, Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 Centre National de la Recherche Scientifique-US18 Institut National de la Santé et de la Recherche Médicale, Rennes, France
| | - Pierre Guihard
- Institut National de la Santé et de la Recherche Médicale, UMR 957, Equipe Labellisée LIGUE 2012, Nantes, France
| | - Yannic Danger
- Structure Fédérative BioSit UMS 3480 Centre National de la Recherche Scientifique-US18 Institut National de la Santé et de la Recherche Médicale, Rennes, France; EFS, Rennes, France
| | - Gregory Noel
- Institut National de la Santé et de la Recherche Médicale, U1085, Institut de Recherche Santé Environnement et Travail, Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 Centre National de la Recherche Scientifique-US18 Institut National de la Santé et de la Recherche Médicale, Rennes, France
| | - Jacques Le Seyec
- Institut National de la Santé et de la Recherche Médicale, U1085, Institut de Recherche Santé Environnement et Travail, Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 Centre National de la Recherche Scientifique-US18 Institut National de la Santé et de la Recherche Médicale, Rennes, France
| | - Marie-Astrid Boutet
- Institut National de la Santé et de la Recherche Médicale, UMR 957, Equipe Labellisée LIGUE 2012, Nantes, France
| | - Carl D Richards
- McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada
| | - Annie L'Helgoualc'h
- Institut National de la Santé et de la Recherche Médicale, U1085, Institut de Recherche Santé Environnement et Travail, Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 Centre National de la Recherche Scientifique-US18 Institut National de la Santé et de la Recherche Médicale, Rennes, France
| | - Valentine Genet
- Institut National de la Santé et de la Recherche Médicale, U1085, Institut de Recherche Santé Environnement et Travail, Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 Centre National de la Recherche Scientifique-US18 Institut National de la Santé et de la Recherche Médicale, Rennes, France
| | - Catherine Lucas-Clerc
- Université de Rennes 1, Rennes, France; Service de Biochimie Centre Hospitalier Universitaire Rennes, Université de Rennes 1, Rennes, France
| | - Hugues Gascan
- Centre National de la Recherche Scientifique, UMR 6290, Institute of Genetics and Development of Rennes, Rennes, France; and
| | - Frédéric Blanchard
- Institut National de la Santé et de la Recherche Médicale, UMR 957, Equipe Labellisée LIGUE 2012, Nantes, France
| | - Claire Piquet-Pellorce
- Institut National de la Santé et de la Recherche Médicale, U1085, Institut de Recherche Santé Environnement et Travail, Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 Centre National de la Recherche Scientifique-US18 Institut National de la Santé et de la Recherche Médicale, Rennes, France
| | - Michel Samson
- Institut National de la Santé et de la Recherche Médicale, U1085, Institut de Recherche Santé Environnement et Travail, Rennes, France; Université de Rennes 1, Rennes, France; Structure Fédérative BioSit UMS 3480 Centre National de la Recherche Scientifique-US18 Institut National de la Santé et de la Recherche Médicale, Rennes, France;
| |
Collapse
|
8
|
Arshad MI, Piquet-Pellorce C, Filliol A, L'Helgoualc'h A, Lucas-Clerc C, Jouan-Lanhouet S, Dimanche-Boitrel MT, Samson M. The chemical inhibitors of cellular death, PJ34 and Necrostatin-1, down-regulate IL-33 expression in liver. J Mol Med (Berl) 2015; 93:867-78. [PMID: 25747661 DOI: 10.1007/s00109-015-1270-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/13/2022]
Abstract
UNLABELLED Interleukin-33 (IL-33), a cytokine belonging to the IL-1 family, is crucially involved in inflammatory pathologies including liver injury and linked to various modes of cell death. However, a link between IL-33 and necroptosis or programmed necrosis in liver pathology remains elusive. We aimed to investigate the regulation of IL-33 during necroptosis-associated liver injury. The possible regulation of IL-33 during liver injury by receptor-interacting protein kinase 1 (RIPK1) and poly(ADP-ribose) polymerase 1 (PARP-1) was investigated in mice in vivo and in hepatic stellate cells in vitro. The liver immunohistopathology, flow cytometry, serum transaminase measurement, ELISA, and qPCR-based cytokine measurement were carried out. By using a chemical approach, we showed that pretreatment of mice with Necrostatin-1 (Nec-1) (inhibitor of RIPK1) and/or PJ34 (inhibitor of PARP-1) significantly protected mice against concanavalin A (ConA) liver injury (aspartate amino-transferase (AST)/alanine amino-transferase (ALT)) associated with down-regulated hepatocyte-specific IL-33 expression. In contrast, the expression level of most systemic cytokines (except for IL-6) or activation of liver immune cells was not altered by chemical inhibitors rather an increased infiltration of neutrophils in the liver. During polyinosine-polycytidylic acid (Poly(I:C))-induced acute hepatitis, liver injury and hepatocyte-specific IL-33 expression was also inhibited by PJ34 without any protective effect of PJ34 in CCl4-induced liver injury. Moreover, PJ34 down-regulated the protein expression of IL-33 in activated hepatic stellate cells by cocktail of cytokines or staurosporine in vitro. In conclusion, we evidenced that the Nec-1/PJ34 is a potent inhibitor of liver injury and Nec-1/PJ34 down-regulated hepatocyte-specific IL-33 expression in the liver in vivo or in hepatic stellate cells in vitro, suggesting IL-33 as a possible readout of necroptosis-involved liver pathologies. KEY MESSAGE Necroptosis inhibitors can protect mice against liver injury induced by ConA or Poly(I:C). IL-33 expression in liver injury in vivo is inhibited by PJ34. IL-33 expression in hepatic stellate cells in vitro is inhibited by PJ34. Hepatocyte-specific IL-33 expression is down-regulated by Nec-1/PJ34 during hepatitis. IL-33 is a new marker of necroptosis-associated liver injuries.
Collapse
Affiliation(s)
- Muhammad Imran Arshad
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement and Travail (IRSET), 35043, Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Gehrmann U, Hiltbrunner S, Georgoudaki AM, Karlsson MC, Näslund TI, Gabrielsson S. Synergistic induction of adaptive antitumor immunity by codelivery of antigen with α-galactosylceramide on exosomes. Cancer Res 2013; 73:3865-76. [PMID: 23658368 DOI: 10.1158/0008-5472.can-12-3918] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exosomes and the invariant NKT (iNKT) immune cell ligand α-galactosylceramide (αGC) may offer novel tools for cancer immunotherapy. In this study, we investigated whether exosomes loaded with αGC can activate iNKT cells and potentiate a cancer-specific adaptive immune response. αGC loaded exosomes readily activated iNKT cells both in vitro and in vivo. Exosomes loaded with αGC plus the model antigen ovalbumin (OVA) induced potent NK and γδ T-cell innate immune responses, and they also synergistically amplified T- and B-cell responses that were OVA specific. In contrast to soluble αGC, which anergizes iNKT cells, we found that αGC/OVA-loaded exosomes did not induce iNKT cell anergy but were more potent than soluble αGC + OVA in inducing adaptive immune responses. In an OVA-expressing mouse model of melanoma, treatment of tumor-bearing mice with αGC/OVA-loaded exosomes decreased tumor growth, increased antigen-specific CD8(+) T-cell tumor infiltration, and increased median survival, relative to control mice immunized with soluble αGC + OVA alone. Notably, an additional injection of αGC/OVA-loaded exosomes further augmented the treatment effects. Our findings show that exosomes loaded with protein antigen and αGC will activate adaptive immunity in the absence of triggering iNKT-cell anergy, supporting their application in the design of a broad variety of cancer immunotherapy trials.
Collapse
MESH Headings
- Adaptive Immunity
- Adjuvants, Immunologic/administration & dosage
- Amino Acid Sequence
- Animals
- Antigens, CD1d/metabolism
- Antigens, Neoplasm/administration & dosage
- Antigens, Neoplasm/immunology
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Clonal Anergy
- Dendritic Cells/metabolism
- Exosomes/immunology
- Female
- Galactosylceramides/administration & dosage
- Immunotherapy, Adoptive
- Lymphocyte Activation
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Natural Killer T-Cells/immunology
- Neoplasm Transplantation
- Ovalbumin/immunology
- Peptide Fragments/immunology
- Tumor Burden/immunology
Collapse
Affiliation(s)
- Ulf Gehrmann
- Department of Medicine Solna, Karolinska Institutet, Translational Immunology Unit, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
10
|
Simoni Y, Gautron AS, Beaudoin L, Bui LC, Michel ML, Coumoul X, Eberl G, Leite-de-Moraes M, Lehuen A. NOD mice contain an elevated frequency of iNKT17 cells that exacerbate diabetes. Eur J Immunol 2011; 41:3574-85. [PMID: 22002883 DOI: 10.1002/eji.201141751] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/18/2011] [Accepted: 10/10/2011] [Indexed: 01/13/2023]
Abstract
Invariant natural killer T (iNKT) cells are a distinct lineage of innate-like T lymphocytes and converging studies in mouse models have demonstrated the protective role of iNKT cells in the development of type 1 diabetes. Recently, a new subset of iNKT cells, producing high levels of the pro-inflammatory cytokine IL-17, has been identified (iNKT17 cells). Since this cytokine has been implicated in several autoimmune diseases, we have analyzed iNKT17 cell frequency, absolute number and phenotypes in the pancreas and lymphoid organs in non-obese diabetic (NOD) mice. The role of iNKT17 cells in the development of diabetes was investigated using transfer experiments. NOD mice exhibit a higher frequency and absolute number of iNKT17 cells in the lymphoid organs as compared with C57BL/6 mice. iNKT17 cells infiltrate the pancreas of NOD mice where they express IL-17 mRNA. Contrary to the protective role of CD4(+) iNKT cells, the CD4(-) iNKT cell population, which contains iNKT17 cells, enhances the incidence of diabetes. Treatment with a blocking anti-IL-17 antibody prevents the exacerbation of the disease. This study reveals that different iNKT cell subsets play distinct roles in the regulation of type 1 diabetes and iNKT17 cells, which are abundant in NOD mice, exacerbate diabetes development.
Collapse
Affiliation(s)
- Yannick Simoni
- INSERM U986, Hôpital Cochin/Saint-Vincent de Paul, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Arshad MI, Rauch M, L'helgoualc'h A, Julia V, Leite-de-Moraes MC, Lucas-Clerc C, Piquet-Pellorce C, Samson M. NKT cells are required to induce high IL-33 expression in hepatocytes during ConA-induced acute hepatitis. Eur J Immunol 2011; 41:2341-8. [PMID: 21557213 DOI: 10.1002/eji.201041332] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/14/2011] [Accepted: 05/05/2011] [Indexed: 11/06/2022]
Abstract
Interleukin-33 (IL-33) is thought to be released during cellular death as an alarming cytokine during the acute phase of disease, but its regulation in vivo is poorly understood. We investigated the expression of IL-33 in two mouse models of acute hepatitis by administering either carbon tetrachloride (CCl(4) ) or concanavalin A (ConA). IL-33 was overexpressed in both models but with a stronger induction in ConA-induced hepatitis. IL-33 was weakly expressed in vascular and sinusoidal endothelial cells from normal liver and was clearly induced in CCl(4) -treated mice. Surprisingly, we found that hepatocytes strongly expressed IL-33 exclusively in the ConA model. CD1d knock-out mice, which are deficient in NKT cells and resistant to ConA-induced hepatitis, no longer expressed IL-33 in hepatocytes following ConA administration. Interestingly, invariant NKT (iNKT) cells adoptively transferred into ConA-treated CD1d KO mouse restored IL-33 expression in hepatocytes. This strongly suggests that NKT cells are responsible for the induction of IL-33 in hepatocytes.
Collapse
|