1
|
Zhang Q, Chen J, Gao H, Zhang S, Zhao C, Zhou C, Wang C, Li Y, Cai Z, Mou L. Drug repurposing: Ibrutinib exhibits immunosuppressive potential in organ transplantation. Int J Med Sci 2018; 15:1118-1128. [PMID: 30123049 PMCID: PMC6097265 DOI: 10.7150/ijms.24460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/12/2018] [Indexed: 11/05/2022] Open
Abstract
Long-term administration of classic immunosuppressants can induce severe adverse effects. The development of novel immunosuppressants confronts great challenges and opportunities. Ibrutinib, an approved drug for B-cell lineages and chronic graft versus host disease (cGVHD), exhibits immunosuppressive efficacy in autoimmune diseases. Ibrutinib's potential as an immunosuppressant in organ transplantation has not been investigated to date. In a xeno-artery patch model ex vivo, ibrutinib inhibited the proliferation of PBMCs (POD 14-42), mainly CD3+CD4+ and CD3+CD8+ T cells ex vivo. The secretion of cytokines (IL-6, IL-2 and IFN-γ) was suppressed in response to ibrutinib. In allo-skin transplantation models, ibrutinib delayed the rejection of grafted skins. Ibrutinib decreased the amount of T/B cells and lymphocyte infiltration. Altogether, ibrutinib exhibited immunosuppressive potential through cytokine regulation and T cell inhibition ex vivo and in vitro. Repositioning of ibrutinib as an immunosuppressant will greatly facilitate novel immunosuppressant development.
Collapse
Affiliation(s)
- Qing Zhang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, China
| | - Jicheng Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, China
| | - Hanchao Gao
- Shenzhen Longhua District Central Hospital, Shenzhen, China.,Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, China
| | - Song Zhang
- The Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Chengjiang Zhao
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Cuibing Zhou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, China
| | - Chengjun Wang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, China
| | - Yang Li
- School of Information Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
2
|
Singla AK, Gurram RK, Chauhan A, Khatri N, Vohra RM, Jolly RS, Agrewala JN. Caerulomycin A suppresses immunity by inhibiting T cell activity. PLoS One 2014; 9:e107051. [PMID: 25286329 PMCID: PMC4186789 DOI: 10.1371/journal.pone.0107051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/05/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Caerulomycin A (CaeA) is a known antifungal and antibiotic agent. Further, CaeA is reported to induce the expansion of regulatory T cell and prolongs the survival of skin allografts in mouse model of transplantation. In the current study, CaeA was purified and characterized from a novel species of actinomycetes, Actinoalloteichus spitiensis. The CaeA was identified for its novel immunosuppressive property by inhibiting in vitro and in vivo function of T cells. METHODS Isolation, purification and characterization of CaeA were performed using High Performance Flash Chromatography (HPFC), NMR and mass spectrometry techniques. In vitro and in vivo T cell studies were conducted in mice using flowcytometry, ELISA and thymidine-[methyl-(3)H] incorporation. RESULTS CaeA significantly suppressed T cell activation and IFN-γ secretion. Further, it inhibited the T cells function at G1 phase of cell cycle. No apoptosis was noticed by CaeA at a concentration responsible for inducing T cell retardation. Furthermore, the change in the function of B cells but not macrophages was observed. The CaeA as well exhibited substantial inhibitory activity in vivo. CONCLUSION This study describes for the first time novel in vitro and in vivo immunosuppressive function of CaeA on T cells and B cells. CaeA has enough potential to act as a future immunosuppressive drug.
Collapse
Affiliation(s)
- Arvind K. Singla
- Biochemical Engineering Research and Process Development Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rama Krishna Gurram
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Arun Chauhan
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Neeraj Khatri
- Experimental Animal Facility, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rakesh M. Vohra
- Biochemical Engineering Research and Process Development Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ravinder S. Jolly
- Department of Chemistry, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N. Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|