1
|
Zhong M, Cywiak C, Metto AC, Liu X, Qian C, Pelled G. Multi-session delivery of synchronous rTMS and sensory stimulation induces long-term plasticity. Brain Stimul 2021; 14:884-894. [PMID: 34029768 DOI: 10.1016/j.brs.2021.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Combining training or sensory stimulation with non-invasive brain stimulation has shown to improve performance in healthy subjects and improve brain function in patients after brain injury. However, the plasticity mechanisms and the optimal parameters to induce long-term and sustainable enhanced performance remain unknown. OBJECTIVE This work was designed to identify the protocols of which combining sensory stimulation with repetitive transcranial magnetic stimulation (rTMS) will facilitate the greatest changes in fMRI activation maps in the rat's primary somatosensory cortex (S1). METHODS Several protocols of combining forepaw electrical stimulation with rTMS were tested, including a single stimulation session compared to multiple, daily stimulation sessions, as well as synchronous and asynchronous delivery of both modalities. High-resolution fMRI was used to determine how pairing sensory stimulation with rTMS induced short and long-term plasticity in the rat S1. RESULTS All groups that received a single session of rTMS showed short-term increases in S1 activity, but these increases did not last three days after the session. The group that received a stimulation protocol of 10 Hz forepaw stimulation that was delivered simultaneously with 10 Hz rTMS for five consecutive days demonstrated the greatest increases in the extent of the evoked fMRI responses compared to groups that received other stimulation protocols. CONCLUSIONS Our results provide direct indication that pairing peripheral stimulation with rTMS induces long-term plasticity, and this phenomenon appears to follow a time-dependent plasticity mechanism. These results will be important to lead the design of new training and rehabilitation paradigms and training towards achieving maximal performance in healthy subjects.
Collapse
Affiliation(s)
- Ming Zhong
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Carolina Cywiak
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Abigael C Metto
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Xiang Liu
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Galit Pelled
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; Department of Radiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Cywiak C, Ashbaugh RC, Metto AC, Udpa L, Qian C, Gilad AA, Reimers M, Zhong M, Pelled G. Non-invasive neuromodulation using rTMS and the electromagnetic-perceptive gene (EPG) facilitates plasticity after nerve injury. Brain Stimul 2020; 13:1774-1783. [PMID: 33068795 DOI: 10.1016/j.brs.2020.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Twenty million Americans suffer from peripheral nerve injury. These patients often develop chronic pain and sensory dysfunctions. In the past decade, neuroimaging studies showed that these changes are associated with altered cortical excitation-inhibition balance and maladaptive plasticity. We tested if neuromodulation of the deprived sensory cortex could restore the cortical balance, and whether it would be effective in alleviating sensory complications. OBJECTIVE We tested if non-invasive repetitive transcranial magnetic stimulation (rTMS) which induces neuronal excitability, and cell-specific magnetic activation via the Electromagnetic-perceptive gene (EPG) which is a novel gene that was identified and cloned from glass catfish and demonstrated to evoke neural responses when magnetically stimulated, can restore cortical excitability. METHODS A rat model of forepaw denervation was used. rTMS was delivered every other day for 30 days, starting at the acute or at the chronic post-injury phase. A minimally-invasive neuromodulation via EPG was performed every day for 30 days starting at the chronic phase. A battery of behavioral tests was performed in the days and weeks following limb denervation in EPG-treated rats, and behavioral tests, fMRI and immunochemistry were performed in rTMS-treated rats. RESULTS The results demonstrate that neuromodulation significantly improved long-term mobility, decreased anxiety and enhanced neuroplasticity. The results identify that both acute and delayed rTMS intervention facilitated rehabilitation. Moreover, the results implicate EPG as an effective cell-specific neuromodulation approach. CONCLUSION Together, these results reinforce the growing amount of evidence from human and animal studies that are establishing neuromodulation as an effective strategy to promote plasticity and rehabilitation.
Collapse
Affiliation(s)
- Carolina Cywiak
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Ryan C Ashbaugh
- The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Abigael C Metto
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Lalita Udpa
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Assaf A Gilad
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Mark Reimers
- The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Ming Zhong
- The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Galit Pelled
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Radiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Li R, Hettinger PC, Liu X, Machol J, Yan JG, Matloub HS, Hyde JS. Early evaluation of nerve regeneration after nerve injury and repair using functional connectivity MRI. Neurorehabil Neural Repair 2014; 28:707-15. [PMID: 24515926 DOI: 10.1177/1545968314521002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Resting state functional connectivity magnetic resonance imaging studies in rat brain show brain reorganization caused by nerve injury and repair. In this study, distinguishable differences were found in healthy, nerve transection without repair (R-) and nerve transection with repair (R+) groups in the subacute stage (2 weeks after initial injury). Only forepaw on the healthy side was used to determine seed voxel regions in this study. Disturbance of neuronal network in the primary sensory region of cortex occurs within two hours after initial injury, and the network pattern was restored in R+ group in subacute stage, while the disturbed pattern remained in R- group. These are the central findings of the study. This technique provides a novel way of detecting and monitoring the effectiveness of peripheral nerve injury treatment in the early stage and potentially offers a tool for clinicians to avoid poor clinical outcomes.
Collapse
Affiliation(s)
- Rupeng Li
- Biophysics Department, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Patrick C Hettinger
- Plastic Surgery Department, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiping Liu
- Dermatology Department, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jacques Machol
- Plastic Surgery Department, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ji-Geng Yan
- Plastic Surgery Department, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hani S Matloub
- Plastic Surgery Department, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James S Hyde
- Biophysics Department, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
4
|
Airan RD, Li N, Gilad AA, Pelled G. Genetic tools to manipulate MRI contrast. NMR IN BIOMEDICINE 2013; 26:803-809. [PMID: 23355411 PMCID: PMC3669659 DOI: 10.1002/nbm.2907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/21/2012] [Indexed: 06/01/2023]
Abstract
Advances in molecular biology in the early 1970s revolutionized research strategies for the study of complex biological processes, which, in turn, created a high demand for new means to visualize these dynamic biological changes noninvasively and in real time. In this respect, MRI was a perfect fit, because of the versatile possibility to alter the different contrast mechanisms. Genetic manipulations are now being translated to MRI through the development of reporters and sensors, as well as the imaging of transgenic and knockout mice. In the past few years, a new molecular biology toolset, namely optogenetics, has emerged, which allows for the manipulation of cellular behavior using light. This technology provides a few particularly attractive features for combination with newly developed MRI techniques for the probing of in vivo cellular and, in particular, neural processes, specifically the ability to control focal, genetically defined cellular populations with high temporal resolution using equipment that is magnetically inert and does not interact with radiofrequency pulses. Recent studies have demonstrated that the combination of optogenetics and functional MRI (fMRI) can provide an appropriate platform to investigate in vivo, at the cellular and molecular levels, the neuronal basis of fMRI signals. In addition, this novel combination of optogenetics with fMRI has the potential to resolve pre-synaptic versus post-synaptic changes in neuronal activity and changes in the activity of large neuronal networks in the context of plasticity associated with development, learning and pathophysiology.
Collapse
Affiliation(s)
- Raag D. Airan
- Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nan Li
- Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Assaf A. Gilad
- Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Galit Pelled
- Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Li R, Hettinger PC, Machol JA, Liu X, Stephenson JB, Pawela CP, Yan JG, Matloub HS, Hyde JS. Cortical plasticity induced by different degrees of peripheral nerve injuries: a rat functional magnetic resonance imaging study under 9.4 Tesla. J Brachial Plex Peripher Nerve Inj 2013; 8:4. [PMID: 23659705 PMCID: PMC3659007 DOI: 10.1186/1749-7221-8-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Major peripheral nerve injuries not only result in local deficits but may also cause distal atrophy of target muscles or permanent loss of sensation. Likewise, these injuries have been shown to instigate long-lasting central cortical reorganization. METHODS Cortical plasticity changes induced after various types of major peripheral nerve injury using an electrical stimulation technique to the rat upper extremity and functional magnetic resonance imaging (fMRI) were examined. Studies were completed out immediately after injury (acute stage) and at two weeks (subacute stage) to evaluate time affect on plasticity. RESULTS After right-side median nerve transection, cortical representation of activation of the right-side ulnar nerve expanded intra-hemispherically into the cortical region that had been occupied by the median nerve representation After unilateral transection of both median and ulnar nerves, cortical representation of activation of the radial nerve on the same side of the body also demonstrated intra-hemispheric expansion. However, simultaneous electrical stimulation of the contralateral uninjured median and ulnar nerves resulted in a representation that had expanded both intra- and inter-hemispherically into the cortical region previously occupied by the two transected nerve representations. CONCLUSIONS After major peripheral nerve injury, an adjacent nerve, with similar function to the injured nerve, may become significantly over-activated in the cortex when stimulated. This results in intra-hemispheric cortical expansion as the only component of cortical plasticity. When all nerves responsible for a certain function are injured, the same nerves on the contralateral side of the body are affected and become significantly over-activated during a task. Both intra- and inter-hemispheric cortical expansion exist, while the latter dominates cortical plasticity.
Collapse
Affiliation(s)
- Rupeng Li
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Patrick C Hettinger
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jacques A Machol
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiping Liu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J B Stephenson
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher P Pawela
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ji-Geng Yan
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hani S Matloub
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James S Hyde
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|