1
|
Yamamoto R, Palmer M, Koski H, Curtis-Joseph N, Tatar M. Aging modulated by the Drosophila insulin receptor through distinct structure-defined mechanisms. Genetics 2021; 217:6064149. [PMID: 33724413 PMCID: PMC8045697 DOI: 10.1093/genetics/iyaa037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Mutations of the Drosophila melanogaster insulin/IGF signaling system slow aging, while also affecting growth and reproduction. To understand this pleiotropy, we produced an allelic series of single codon substitutions in the Drosophila insulin receptor, InR. We generated InR substitutions using homologous recombination and related each to emerging models of receptor tyrosine kinase structure and function. Three mutations when combined as trans-heterozygotes extended lifespan while retarding growth and fecundity. These genotypes reduced insulin-stimulated Akt phosphorylation, suggesting they impede kinase catalytic domain function. Among these genotypes, longevity was negatively correlated with egg production, consistent with life-history trade-off theory. In contrast, one mutation (InR353) was located in the kinase insert domain, a poorly characterized element found in all receptor tyrosine kinases. Remarkably, wild-type heterozygotes with InR353 robustly extended lifespan without affecting growth or reproduction and retained capacity to fully phosphorylate Akt. The Drosophila insulin receptor kinase insert domain contains a previously unrecognized SH2 binding motif. We propose the kinase insert domain interacts with SH2-associated adapter proteins to affect aging through mechanisms that retain insulin sensitivity and are independent of reproduction.
Collapse
Affiliation(s)
- Rochele Yamamoto
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Michael Palmer
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Helen Koski
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Noelle Curtis-Joseph
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Post S, Liao S, Yamamoto R, Veenstra JA, Nässel DR, Tatar M. Drosophila insulin-like peptide dilp1 increases lifespan and glucagon-like Akh expression epistatic to dilp2. Aging Cell 2019; 18:e12863. [PMID: 30511458 PMCID: PMC6351851 DOI: 10.1111/acel.12863] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/24/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022] Open
Abstract
Insulin/IGF signaling (IIS) regulates essential processes including development, metabolism, and aging. The Drosophila genome encodes eight insulin/IGF‐like peptide (dilp) paralogs, including tandem‐encoded dilp1 and dilp2. Many reports show that longevity is increased by manipulations that decrease DILP2 levels. It has been shown that dilp1 is expressed primarily in pupal stages, but also during adult reproductive diapause. Here, we find that dilp1 is also highly expressed in adult dilp2 mutants under nondiapause conditions. The inverse expression of dilp1 and dilp2 suggests these genes interact to regulate aging. Here, we study dilp1 and dilp2 single and double mutants to describe epistatic and synergistic interactions affecting longevity, metabolism, and adipokinetic hormone (AKH), the functional homolog of glucagon. Mutants of dilp2 extend lifespan and increase Akh mRNA and protein in a dilp1‐dependent manner. Loss of dilp1 alone has no impact on these traits, whereas transgene expression of dilp1 increases lifespan in dilp1 − dilp2 double mutants. On the other hand, dilp1 and dilp2 redundantly or synergistically interact to control circulating sugar, starvation resistance, and compensatory dilp5 expression. These interactions do not correlate with patterns for how dilp1 and dilp2 affect longevity and AKH. Thus, repression or loss of dilp2 slows aging because its depletion induces dilp1, which acts as a pro‐longevity factor. Likewise, dilp2 regulates Akh through epistatic interaction with dilp1. Akh and glycogen affect aging in Caenorhabditis elegans and Drosophila. Our data suggest that dilp2 modulates lifespan in part by regulating Akh, and by repressing dilp1, which acts as a pro‐longevity insulin‐like peptide.
Collapse
Affiliation(s)
- Stephanie Post
- Department of Molecular Biology, Cell Biology and Biochemistry; Brown University; Providence Rhode Island
- Department of Ecology and Evolutionary Biology; Brown University; Providence Rhode Island
| | - Sifang Liao
- Department of Zoology; Stockholm University; Stockholm Sweden
| | - Rochele Yamamoto
- Department of Ecology and Evolutionary Biology; Brown University; Providence Rhode Island
| | - Jan A. Veenstra
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine (CNRS UMR5287); University of Bordeaux; Pessac France
| | - Dick R. Nässel
- Department of Zoology; Stockholm University; Stockholm Sweden
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology; Brown University; Providence Rhode Island
| |
Collapse
|
3
|
Johan Arief MF, Choo BKM, Yap JL, Kumari Y, Shaikh MF. A Systematic Review on Non-mammalian Models in Epilepsy Research. Front Pharmacol 2018; 9:655. [PMID: 29997502 PMCID: PMC6030834 DOI: 10.3389/fphar.2018.00655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/31/2018] [Indexed: 02/03/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by seizures which result in distinctive neurobiological and behavioral impairments. Not much is known about the causes of epilepsy, making it difficult to devise an effective cure for epilepsy. Moreover, clinical studies involving epileptogenesis and ictogenesis cannot be conducted in humans due to ethical reasons. As a result, animal models play a crucial role in the replication of epileptic seizures. In recent years, non-mammalian models have been given a primary focus in epilepsy research due to their advantages. This systematic review aims to summarize the importance of non-mammalian models in epilepsy research, such as in the screening of anti-convulsive compounds. The reason for this review is to integrate currently available information on the use and importance of non-mammalian models in epilepsy testing to aid in the planning of future studies as well as to provide an overview of the current state of this field. A PRISMA model was utilized and PubMed, Springer, ScienceDirect and SCOPUS were searched for articles published between January 2007 and November 2017. Fifty-one articles were finalized based on the inclusion/exclusion criteria and were discussed in this review. The results of this review demonstrated the current use of non-mammalian models in epilepsy research and reaffirmed their potential to supplement the typical rodent models of epilepsy in future research into both epileptogenesis and the treatment of epilepsy. This review also revealed a preference for zebrafish and fruit flies in lieu of other non-mammalian models, which is a shortcoming that should be corrected in future studies due to the great potential of these underutilized animal models.
Collapse
Affiliation(s)
- Muhammad Faiz Johan Arief
- MBBS Young Scholars Program, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Brandon Kar Meng Choo
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Jia Ling Yap
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
4
|
Bronk P, Kuklin EA, Gorur-Shandilya S, Liu C, Wiggin TD, Reed ML, Marder E, Griffith LC. Regulation of Eag by Ca 2+/calmodulin controls presynaptic excitability in Drosophila. J Neurophysiol 2018; 119:1665-1680. [PMID: 29364071 PMCID: PMC6008097 DOI: 10.1152/jn.00820.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 11/22/2022] Open
Abstract
Drosophila ether-à-go-go ( eag) is the founding member of a large family of voltage-gated K+ channels, the KCNH family, which includes Kv10, 11, and 12. Concurrent binding of calcium/calmodulin (Ca2+/CaM) to NH2- and COOH-terminal sites inhibits mammalian EAG1 channels at submicromolar Ca2+ concentrations, likely by causing pore constriction. Although the Drosophila EAG channel was believed to be Ca2+-insensitive (Schönherr R, Löber K, Heinemann SH. EMBO J 19: 3263-3271, 2000.), both the NH2- and COOH-terminal sites are conserved. In this study we show that Drosophila EAG is inhibited by high Ca2+ concentrations that are only present at plasma membrane Ca2+ channel microdomains. To test the role of this regulation in vivo, we engineered mutations that block CaM-binding to the major COOH-terminal site of the endogenous eag locus, disrupting Ca2+-dependent inhibition. eag CaMBD mutants have reduced evoked release from larval motor neuron presynaptic terminals and show decreased Ca2+ influx in stimulated adult projection neuron presynaptic terminals, consistent with an increase in K+ conductance. These results are predicted by a conductance-based multicompartment model of the presynaptic terminal in which some fraction of EAG is localized to the Ca2+ channel microdomains that control neurotransmitter release. The reduction of release in the larval neuromuscular junction drives a compensatory increase in motor neuron somatic excitability. This misregulation of synaptic and somatic excitability has consequences for systems-level processes and leads to defects in associative memory formation in adults. NEW & NOTEWORTHY Regulation of excitability is critical to tuning the nervous system for complex behaviors. We demonstrate in this article that the EAG family of voltage-gated K+ channels exhibit conserved gating by Ca2+/CaM. Disruption of this inhibition in Drosophila results in decreased evoked neurotransmitter release due to truncated Ca2+ influx in presynaptic terminals. In adults, disrupted Ca2+ dynamics cripples memory formation. These data demonstrate that the biophysical details of channels have important implications for cell function and behavior.
Collapse
Affiliation(s)
- Peter Bronk
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts
| | - Elena A Kuklin
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts
| | - Srinivas Gorur-Shandilya
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts
| | - Chang Liu
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts
| | - Timothy D Wiggin
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts
| | - Martha L Reed
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts
| | - Eve Marder
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts
| | - Leslie C Griffith
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts
| |
Collapse
|
5
|
The Long 3'UTR mRNA of CaMKII Is Essential for Translation-Dependent Plasticity of Spontaneous Release in Drosophila melanogaster. J Neurosci 2017; 37:10554-10566. [PMID: 28954869 DOI: 10.1523/jneurosci.1313-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/05/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
A null mutation of the Drosophila calcium/calmodulin-dependent protein kinase II gene (CaMKII) was generated using homologous recombination. Null animals survive to larval and pupal stages due to a large maternal contribution of CaMKII mRNA, which consists of a short 3'-untranslated region (UTR) form lacking regulatory elements that guide local translation. The selective loss of the long 3'UTR mRNA in CaMKII-null larvae allows us to test its role in plasticity. Development and evoked function of the larval neuromuscular junction are surprisingly normal, but the resting rate of miniature excitatory junctional potentials (mEJPs) is significantly lower in CaMKII mutants. Mutants also lack the ability to increase mEJP rate in response to spaced depolarization, a type of activity-dependent plasticity shown to require both transcription and translation. Consistent with this, overexpression of miR-289 in wild-type animals blocks plasticity of spontaneous release. In addition to the defects in regulation of mEJP rate, CaMKII protein is largely lost from synapses in the mutant. All phenotypes are non-sex-specific and rescued by a fosmid containing the entire wild-type CaMKII locus, but only viability and CaMKII localization are rescued by genomic fosmids lacking the long 3'UTR. This suggests that synaptic CaMKII accumulates by two distinct mechanisms: local synthesis requiring the long 3'UTR form of CaMKII mRNA and a process that requires zygotic transcription of CaMKII mRNA. The origin of synaptic CaMKII also dictates its functionality. Locally translated CaMKII has a privileged role in regulation of spontaneous release, which cannot be fulfilled by synaptic CaMKII from the other pool.SIGNIFICANCE STATEMENT As a regulator of synaptic development and plasticity, CaMKII has important roles in both normal and pathological function of the nervous system. CaMKII shows high conservation between Drosophila and humans, underscoring the usefulness of Drosophila in modeling its function. Drosophila CaMKII-null mutants remain viable throughout development, enabling morphological and electrophysiological characterization. Although the structure of the synapse is normal, maternally contributed CaMKII does not localize to synapses. Zygotic production of CaMKII mRNA with a long 3'-untranslated region is necessary for modulating spontaneous neurotransmission in an activity-dependent manner, but not for viability. These data argue that regulation of CaMKII localization and levels by local transcriptional processes is conserved. This is the first demonstration of distinct functions for Drosophila CaMKII mRNA variants.
Collapse
|
6
|
Human SOD1 ALS Mutations in a Drosophila Knock-In Model Cause Severe Phenotypes and Reveal Dosage-Sensitive Gain- and Loss-of-Function Components. Genetics 2016; 205:707-723. [PMID: 27974499 DOI: 10.1534/genetics.116.190850] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/13/2016] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset motor neuron disease and familial forms can be caused by numerous dominant mutations of the copper-zinc superoxide dismutase 1 (SOD1) gene. Substantial efforts have been invested in studying SOD1-ALS transgenic animal models; yet, the molecular mechanisms by which ALS-mutant SOD1 protein acquires toxicity are not well understood. ALS-like phenotypes in animal models are highly dependent on transgene dosage. Thus, issues of whether the ALS-like phenotypes of these models stem from overexpression of mutant alleles or from aspects of the SOD1 mutation itself are not easily deconvolved. To address concerns about levels of mutant SOD1 in disease pathogenesis, we have genetically engineered four human ALS-causing SOD1 point mutations (G37R, H48R, H71Y, and G85R) into the endogenous locus of Drosophila SOD1 (dsod) via ends-out homologous recombination and analyzed the resulting molecular, biochemical, and behavioral phenotypes. Contrary to previous transgenic models, we have recapitulated ALS-like phenotypes without overexpression of the mutant protein. Drosophila carrying homozygous mutations rendering SOD1 protein enzymatically inactive (G85R, H48R, and H71Y) exhibited neurodegeneration, locomotor deficits, and shortened life span. The mutation retaining enzymatic activity (G37R) was phenotypically indistinguishable from controls. While the observed mutant dsod phenotypes were recessive, a gain-of-function component was uncovered through dosage studies and comparisons with age-matched dsod null animals, which failed to show severe locomotor defects or nerve degeneration. We conclude that the Drosophila knock-in model captures important aspects of human SOD1-based ALS and provides a powerful and useful tool for further genetic studies.
Collapse
|
7
|
Schutte SS, Schutte RJ, Barragan EV, O'Dowd DK. Model systems for studying cellular mechanisms of SCN1A-related epilepsy. J Neurophysiol 2016; 115:1755-66. [PMID: 26843603 DOI: 10.1152/jn.00824.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/22/2016] [Indexed: 11/22/2022] Open
Abstract
Mutations in SCN1A, the gene encoding voltage-gated sodium channel NaV1.1, cause a spectrum of epilepsy disorders that range from genetic epilepsy with febrile seizures plus to catastrophic disorders such as Dravet syndrome. To date, more than 1,250 mutations in SCN1A have been linked to epilepsy. Distinct effects of individual SCN1A mutations on neuronal function are likely to contribute to variation in disease severity and response to treatment in patients. Several model systems have been used to explore seizure genesis in SCN1A epilepsies. In this article we review what has been learned about cellular mechanisms and potential new therapies from these model systems, with a particular emphasis on the novel model system of knock in Drosophila and a look toward the future with expanded use of patient-specific induced pluripotent stem cell-derived neurons.
Collapse
Affiliation(s)
- Soleil S Schutte
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| | - Ryan J Schutte
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| | - Eden V Barragan
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| | - Diane K O'Dowd
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| |
Collapse
|
8
|
Rieder LE, Savva YA, Reyna MA, Chang YJ, Dorsky JS, Rezaei A, Reenan RA. Dynamic response of RNA editing to temperature in Drosophila. BMC Biol 2015; 13:1. [PMID: 25555396 PMCID: PMC4299485 DOI: 10.1186/s12915-014-0111-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022] Open
Abstract
Background Adenosine-to-inosine RNA editing is a highly conserved process that post-transcriptionally modifies mRNA, generating proteomic diversity, particularly within the nervous system of metazoans. Transcripts encoding proteins involved in neurotransmission predominate as targets of such modifications. Previous reports suggest that RNA editing is responsive to environmental inputs in the form of temperature alterations. However, the molecular determinants underlying temperature-dependent RNA editing responses are not well understood. Results Using the poikilotherm Drosophila, we show that acute temperature alterations within a normal physiological range result in substantial changes in RNA editing levels. Our examination of particular sites reveals diversity in the patterns with which editing responds to temperature, and these patterns are conserved across five species of Drosophilidae representing over 10 million years of divergence. In addition, we show that expression of the editing enzyme, ADAR (adenosine deaminase acting on RNA), is dramatically decreased at elevated temperatures, partially, but not fully, explaining some target responses to temperature. Interestingly, this reduction in editing enzyme levels at elevated temperature is only partially reversed by a return to lower temperatures. Lastly, we show that engineered structural variants of the most temperature-sensitive editing site, in a sodium channel transcript, perturb thermal responsiveness in RNA editing profile for a particular RNA structure. Conclusions Our results suggest that the RNA editing process responds to temperature alterations via two distinct molecular mechanisms: through intrinsic thermo-sensitivity of the RNA structures that direct editing, and due to temperature sensitive expression or stability of the RNA editing enzyme. Environmental cues, in this case temperature, rapidly reprogram the Drosophila transcriptome through RNA editing, presumably resulting in altered proteomic ratios of edited and unedited proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0111-3) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Rieder LE, Staber CJ, Hoopengardner B, Reenan RA. Tertiary structural elements determine the extent and specificity of messenger RNA editing. Nat Commun 2013; 4:2232. [PMID: 23903876 DOI: 10.1038/ncomms3232] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/02/2013] [Indexed: 02/03/2023] Open
Abstract
The specificity and extent of RNA editing by ADAR enzymes is determined largely by local primary sequence and secondary structural imperfections in duplex RNA. Here we surgically alter conserved cis elements associated with a cluster of ADAR modification sites within the endogenous Drosophila paralytic transcript. In addition to the local requirement for a central imperfect RNA duplex containing the modified adenosines, we demonstrate that a secondary RNA duplex containing splicing signals strongly modulates RNA editing. A subtle non-coding mutation, extending base pairing of this accessory helix, confers significant phenotypic consequences via effects on splicing. Through mutation/counter-mutation, we also uncover and functionally replace a highly conserved intronic long-range tertiary pseudoknot that is absolutely required for deamination of one particular adenosine in the central duplex. Our results demonstrate that complex RNA tertiary structures, which may be difficult to predict computationally, form in vivo and can regulate RNA-editing events.
Collapse
Affiliation(s)
- Leila E Rieder
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
10
|
A knock-in model of human epilepsy in Drosophila reveals a novel cellular mechanism associated with heat-induced seizure. J Neurosci 2013; 32:14145-55. [PMID: 23055484 DOI: 10.1523/jneurosci.2932-12.2012] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Over 40 missense mutations in the human SCN1A sodium channel gene are linked to an epilepsy syndrome termed genetic epilepsy with febrile seizures plus (GEFS+). Inheritance of GEFS+ is dominant, but the underlying cellular mechanisms remain poorly understood. Here we report that knock-in of a GEFS+ SCN1A mutation (K1270T) into the Drosophila sodium channel gene, para, causes a semidominant temperature-induced seizure phenotype. Electrophysiological studies of GABAergic interneurons in the brains of adult GEFS+ flies reveal a novel cellular mechanism underlying heat-induced seizures: the deactivation threshold for persistent sodium currents reversibly shifts to a more negative voltage when the temperature is elevated. This leads to sustained depolarizations in GABAergic neurons and reduced inhibitory activity in the central nervous system. Furthermore, our data indicate a natural temperature-dependent shift in sodium current deactivation (exacerbated by mutation) may contribute to febrile seizures in GEFS+ and perhaps normal individuals.
Collapse
|
11
|
Mutations to the piRNA pathway component aubergine enhance meiotic drive of segregation distorter in Drosophila melanogaster. Genetics 2012; 193:771-84. [PMID: 23267055 DOI: 10.1534/genetics.112.147561] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diploid sexual reproduction involves segregation of allelic pairs, ensuring equal representation of genotypes in the gamete pool. Some genes, however, are able to "cheat" the system by promoting their own transmission. The Segregation distorter (Sd) locus in Drosophila melanogaster males is one of the best-studied examples of this type of phenomenon. In this system the presence of Sd on one copy of chromosome 2 results in dysfunction of the non-Sd-bearing (Sd(+)) sperm and almost exclusive transmission of Sd to the next generation. The mechanism by which Sd wreaks such selective havoc has remained elusive. However, its effect requires a target locus on chromosome 2 known as Responder (Rsp). The Rsp locus comprises repeated copies of a satellite DNA sequence and Rsp copy number correlates with sensitivity to Sd. Under distorting conditions during spermatogenesis, nuclei with chromosomes containing greater than several hundred Rsp repeats fail to condense chromatin and are eliminated. Recently, Rsp sequences were found as small RNAs in association with Argonaute family proteins Aubergine (Aub) and Argonaute3 (AGO3). These proteins are involved in a germline-specific RNAi mechanism known as the Piwi-interacting RNA (piRNA) pathway, which specifically suppresses transposon activation in the germline. Here, we evaluate the role of piRNAs in segregation distortion by testing the effects of mutations to piRNA pathway components on distortion. Further, we specifically targeted mutations to the aub locus of a Segregation Distorter (SD) chromosome, using ends-out homologous recombination. The data herein demonstrate that mutations to piRNA pathway components act as enhancers of SD.
Collapse
|
12
|
The intricate relationship between RNA structure, editing, and splicing. Semin Cell Dev Biol 2011; 23:281-8. [PMID: 22178616 DOI: 10.1016/j.semcdb.2011.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 11/15/2011] [Accepted: 11/17/2011] [Indexed: 11/23/2022]
Abstract
Post-transcriptional modifications such as RNA editing and splicing diversify the proteome while limiting the necessary size of the genome. Although splicing globally rearranges existing information within the transcript, the conserved process of adenosine-to-inosine RNA editing recodes the message through single nucleotide changes, often at very specific locations. Because inosine is interpreted as guanosine by the cellular machineries, editing effectively results in the substitution of a guanosine for an adenosine in the primary RNA sequence. Precise control of editing is dictated by duplex structures in the transcript, formed between the exonic region surrounding the editing site and cis regulatory elements often localized in a nearby intron, suggesting that editing must precede splicing. However, the precise relationship between these post-transcriptional processes remains unclear. Here we present general commonalities of RNA editing substrates and consequential predictions regarding the interaction between editing and splicing. We also discuss anomalies and interesting cases of RNA editing that confound our understanding of the relationship between these post-transcriptional processes.
Collapse
|