1
|
Liu X, Liao S, Xu Z, Zhu L, Yang F, Guo W. Identification and Analysis of the Porcine MicroRNA in Porcine Cytomegalovirus-Infected Macrophages Using Deep Sequencing. PLoS One 2016; 11:e0150971. [PMID: 26943793 PMCID: PMC4778948 DOI: 10.1371/journal.pone.0150971] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/22/2016] [Indexed: 12/25/2022] Open
Abstract
Porcine cytomegalovirus (PCMV; genus Cytomegalovirus, subfamily Betaherpesvirinae, family Herpesviridae) is an immunosuppressive virus that mainly inhibits the immune function of T lymphocytes and macrophages, which has caused substantial damage in the farming industry. In this study, we obtained the miRNA expression profiles of PCMV-infected porcine macrophages via high-throughput sequencing. The comprehensive analysis of miRNA profiles showed that 239 miRNA database-annotated and 355 novel pig-encoded miRNAs were detected. Of these, 130 miRNAs showed significant differential expression between the PCMV-infected and uninfected porcine macrophages. The 10 differentially expressed pig-encoded miRNAs were further determined by stem-loop reverse-transcription polymerase chain reaction, and the results were consistent with the high-throughput sequencing. Gene Ontology analysis of the target genes of miRNAs in PCMV-infected porcine macrophages showed that the differentially expressed miRNAs are mainly involved in immune and metabolic processes. This is the first report of the miRNA transcriptome in porcine macrophages and an analysis of the miRNA regulatory mechanisms during PCMV infection. Further research into the regulatory mechanisms of miRNAs during immunosuppressive viral infections should contribute to the treatment and prevention of immunosuppressive viruses.
Collapse
Affiliation(s)
- Xiao Liu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya’ an, 625014, China
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts, General Hospital, Harvard Medical School, Boston, MA, 02114, United States of America
| | - Shan Liao
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya’ an, 625014, China
| | - Zhiwen Xu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya’ an, 625014, China
- Key Laboratory of Animal Disease and Human Health, College of Veterinary Medicine, Sichuan Agricultural University, Ya’ an, 625014, China
- * E-mail:
| | - Ling Zhu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya’ an, 625014, China
| | - Fan Yang
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya’ an, 625014, China
| | - Wanzhu Guo
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya’ an, 625014, China
| |
Collapse
|
2
|
Cloning and profiling of small RNAs from cucumber mosaic virus satellite RNA. Methods Mol Biol 2015; 1236:99-109. [PMID: 25287499 DOI: 10.1007/978-1-4939-1743-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RNA silencing is not only a gene regulation mechanism that is conserved in a broad range of eukaryotes but also an adaptive immune response against foreign nucleic acids including viruses in plants. A major feature of RNA silencing is the production of small RNA (sRNA) of 21-24 nucleotides (nt) in length from double-stranded (ds) or hairpin-like (hp) RNA by Dicer-like (DCL) proteins. These sRNAs guide the binding and cleavage of cognate single-stranded (ss) RNA by an RNA silencing complex. Like all plant viruses and subviral agents, replication of viral satellite RNAs (satRNAs) is associated with the accumulation of 21-24 nt viral small interfering RNA (vsiRNA) derived from the whole region of a satRNA genome in both plus and minus-strand polarities. These satRNA-derived siRNAs (satsiRNAs) have recently been shown to play an important role in the trilateral interactions among host plants, helper viruses and satRNAs. Here, we describe the cloning and profile analysis of satsiRNAs from satRNAs of Cucumber mosaic virus (CMV). We also describe a method to minimize the strand bias that often occurs during vsiRNA cloning and sequencing.
Collapse
|
3
|
Feng J, Liu S, Wang M, Lang Q, Jin C. Identification of microRNAs and their targets in tomato infected with Cucumber mosaic virus based on deep sequencing. PLANTA 2014; 240:1335-52. [PMID: 25204630 DOI: 10.1007/s00425-014-2158-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/14/2014] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNAs) play important regulatory roles in plant development and stress responses. Tomato is an economically important vegetable crop in the world with publicly available genomic information database, but only a limited number of tomato miRNAs have been identified. In this study, two independent small RNA libraries from mock and Cucumber mosaic virus (CMV)-infected tomatoes were constructed, respectively, and sequenced with a high-throughput Illumina Solexa system. Based on sequence analysis and hairpin structure prediction, a total of 50 plant miRNAs and 273 potentially candidate miRNAs (PC-miRNAs) were firstly identified in tomato, with 12 plant miRNAs and 82 PC-miRNAs supported by both the 3p and 5p strands. Comparative analysis revealed that 79 miRNAs (including 15 new tomato miRNAs) and 40 PC-miRNAs were differentially expressed between the two libraries, and the expression patterns of some new tomato miRNAs and PC-miRNAs were further validated by qRT-PCR. Moreover, potential targets for some of the known and new tomato miRNAs were identified by the recently developed degradome sequencing approach, and target annotation indicated that they were involved in multiple biological processes, including transcriptional regulation and virus resistance. Gene ontology analysis of these target transcripts demonstrated that defense response- and photosynthesis-related genes were most affected in CMV-Fny-infected tomatoes. Because tomato is not only an important crop but also is a genetic model for basic biology research, our study contributes to the understanding of miRNAs in response to virus infection.
Collapse
Affiliation(s)
- Junli Feng
- Institute of Aquatic Products Processing, College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, China,
| | | | | | | | | |
Collapse
|
4
|
Abstract
Lung cancer, which can be divided into two major clinical-pathological categories, small cell lung cancer and non-small cell lung cancer, is the leading cause of cancer-related death worldwide. MicroRNAs (miRNAs), small non-coding RNAs approximately 22 nucleotides in length, have been reported to be upregulated or downregulated in disease states and specific cell types. Recently, miRNAs have gained recognition as major regulators of human gene expression. MiRNAs can control highly complex signal transduction pathways and other biological pathways by targeting and controlling gene expression, accounting for their important role in lung cancer. Findings from recent studies on the roles of miRNAs in lung cancer are summarized in this review. Understanding miRNA functions in lung cancer will bring molecular-level insight leading to better prognosis, diagnosis, and therapeutic approaches.
Collapse
Affiliation(s)
- Sung-Min Kang
- Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700 412, Korea
| | - Heon-Jin Lee
- Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu 700 412, Korea Brain Science and Engineering Institute, Kyungpook National University, Daegu 700 412, South Korea
| |
Collapse
|
5
|
Liang T, Liu C, Ye Z. Deep sequencing of small RNA repertoires in mice reveals metabolic disorders-associated hepatic miRNAs. PLoS One 2013; 8:e80774. [PMID: 24260478 PMCID: PMC3829963 DOI: 10.1371/journal.pone.0080774] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/05/2013] [Indexed: 12/22/2022] Open
Abstract
Obesity and associated metabolic disorders contribute importantly to the metabolic syndrome. On the other hand, microRNAs (miRNAs) are a class of small non-coding RNAs that repress target gene expression by inducing mRNA degradation and/or translation repression. Dysregulation of specific miRNAs in obesity may influence energy metabolism and cause insulin resistance, which leads to dyslipidemia, steatosis hepatis and type 2 diabetes. In the present study, we comprehensively analyzed and validated dysregulated miRNAs in ob/ob mouse liver, as well as miRNA groups based on miRNA gene cluster and gene family by using deep sequencing miRNA datasets. We found that over 13.8% of the total analyzed miRNAs were dysregulated, of which 37 miRNA species showed significantly differential expression. Further RT-qPCR analysis in some selected miRNAs validated the similar expression patterns observed in deep sequencing. Interestingly, we found that miRNA gene cluster and family always showed consistent dysregulation patterns in ob/ob mouse liver, although they had various enrichment levels. Functional enrichment analysis revealed the versatile physiological roles (over six signal pathways and five human diseases) of these miRNAs. Biological studies indicated that overexpression of miR-126 or inhibition of miR-24 in AML-12 cells attenuated free fatty acids-induced fat accumulation. Taken together, our data strongly suggest that obesity and metabolic disturbance are tightly associated with functional miRNAs. We also identified hepatic miRNA candidates serving as potential biomarkers for the diagnose of the metabolic syndrome.
Collapse
Affiliation(s)
- Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China
- * E-mail:
| | - Chang Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Zhenchao Ye
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Ou J, Meng Q, Li Y, Xiu Y, Du J, Gu W, Wu T, Li W, Ding Z, Wang W. Identification and comparative analysis of the Eriocheir sinensis microRNA transcriptome response to Spiroplasma eriocheiris infection using a deep sequencing approach. FISH & SHELLFISH IMMUNOLOGY 2012; 32:345-352. [PMID: 22166732 DOI: 10.1016/j.fsi.2011.11.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/22/2011] [Accepted: 11/25/2011] [Indexed: 05/31/2023]
Abstract
The Chinese mitten crab Eriocheir sinensis is one of the most important freshwater aquaculture crustacean species in China. MicroRNAs (miRNAs) are small non-coding RNAs that are important effectors in the intricate host-pathogen interaction network. To increase the repertoire of miRNAs characterized in crustaceans and to examine the relationship between host miRNA expression and pathogen infection, we used the Illumina/Solexa deep sequencing technology to sequence two small RNA libraries prepared from haemocytes of E. sinensis under normal conditions and during infection with Spiroplasma eriocheiris. The high-throughput sequencing resulted in approximately 30,975,151 and 30,826,277 raw reads corresponding to 12,077,088 and 16,271,545 high-quality mappable reads for the normal and infected haemocyte samples, respectively. Bioinformatic analyses identified 735 unique miRNAs, including 36 that are conserved in crustaceans, 134 that are novel to crabs but are present in other arthropods (PN-type), and 565 that are completely new (PC-type). Two hundred twenty-eight unique miRNAs displayed significant differential expression between the normal and infected haemocyte samples (p < 0.0001). Of these, 133 (58%) were significantly up-regulated and 95 (42%) were significantly down-regulated upon challenge with S. eriocheiris. Real-time quantitative PCR (RT-qPCR) experiments were preformed for 10 miRNAs of the two samples, and agreement was found between the sequencing and RT-qPCR data. To our knowledge, this is the first report of comprehensive identification of E. sinensis miRNAs and of expression analysis of E. sinensis miRNAs after exposure to S. eriocheiris. Many miRNAs were differentially regulated when exposed to the pathogen, and these findings support the hypothesis that certain miRNAs might be essential in host-pathogen interactions. Our results suggest that elucidation of the molecular mechanisms responsible for miRNA regulation of the host's innate immune system should help with the development of new control strategies to prevent or treat S. eriocheiris infections in crustaceans.
Collapse
Affiliation(s)
- Jiangtao Ou
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|