1
|
Volz J, Kusch C, Beck S, Popp M, Vögtle T, Meub M, Scheller I, Heil HS, Preu J, Schuhmann MK, Hemmen K, Premsler T, Sickmann A, Heinze KG, Stegner D, Stoll G, Braun A, Sauer M, Nieswandt B. BIN2 orchestrates platelet calcium signaling in thrombosis and thrombo-inflammation. J Clin Invest 2021; 130:6064-6079. [PMID: 32750041 DOI: 10.1172/jci136457] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/31/2020] [Indexed: 01/01/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is the major route of Ca2+ influx in platelets. The Ca2+ sensor stromal interaction molecule 1 (STIM1) triggers SOCE by forming punctate structures with the Ca2+ channel Orai1 and the inositol trisphosphate receptor (IP3R), thereby linking the endo-/sarcoplasmic reticulum to the plasma membrane. Here, we identified the BAR domain superfamily member bridging integrator 2 (BIN2) as an interaction partner of STIM1 and IP3R in platelets. Deletion of platelet BIN2 (Bin2fl/fl,Pf4-Cre mice) resulted in reduced Ca2+ store release and Ca2+ influx in response to all tested platelet agonists. These defects were a consequence of impaired IP3R function in combination with defective STIM1-mediated SOC channel activation, while Ca2+ store content and agonist-induced IP3 production were unaltered. This severely defective Ca2+ signaling translated into impaired thrombus formation under flow and a protection of Bin2fl/fl,Pf4-Cre mice in models of arterial thrombosis and stroke. Our results establish BIN2 as a central regulator of platelet activation in thrombosis and thrombo-inflammatory disease settings.
Collapse
Affiliation(s)
- Julia Volz
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Sarah Beck
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Michael Popp
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Timo Vögtle
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Mara Meub
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Inga Scheller
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Hannah S Heil
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Julia Preu
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | | | - Katherina Hemmen
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Thomas Premsler
- Leibniz-Institut für Analytische Wissenschaften, Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften, Dortmund, Germany.,Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Katrin G Heinze
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - David Stegner
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Guido Stoll
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Attila Braun
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Abstract
We tested the ability of platelet-derived extracellular vesicles (PEV) to promote adhesion of flowing neutrophils to endothelial cells (EC). PEV were collected from platelets stimulated with collagen-related peptide, and differential centrifugation was used to collect larger vesicles enriched for platelet membrane microvesicles (PMV) or smaller vesicles enriched for platelet exosomes (Pexo). Vesicle binding and resultant activation of neutrophils and EC were assessed by flow cytometry. Flow-based adhesion assays assessed binding of neutrophils directly to deposited vesicles or to EC, after neutrophils or EC had been treated with vesicles. PEV bound efficiently to neutrophils or EC, with resultant upregulation of activation markers. Binding was Ca++-dependent and dominantly mediated by CD62P for neutrophils or by integrins for EC. Deposited PEV supported mainly transient attachments of flowing neutrophils through CD62P and some stable adhesion through CXC-chemokines. Neutrophil adhesion to EC was promoted when either cell was pre-treated with PEV, although the effect was less prominent when EC were pre-activated with tumor necrosis factor-α. The pro-adhesive effects on neutrophils could largely be attributed to the larger PMV rather than Pexo. Thus, surface-bound PEV can capture flowing neutrophils, while PEV also activate neutrophils and EC to promote interactions. PEV may potentiate inflammatory responses after tissue injury.
Collapse
|
4
|
Swinkels M, Rijkers M, Voorberg J, Vidarsson G, Leebeek FWG, Jansen AJG. Emerging Concepts in Immune Thrombocytopenia. Front Immunol 2018; 9:880. [PMID: 29760702 PMCID: PMC5937051 DOI: 10.3389/fimmu.2018.00880] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/09/2018] [Indexed: 01/19/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease defined by low platelet counts which presents with an increased bleeding risk. Several genetic risk factors (e.g., polymorphisms in immunity-related genes) predispose to ITP. Autoantibodies and cytotoxic CD8+ T cells (Tc) mediate the anti-platelet response leading to thrombocytopenia. Both effector arms enhance platelet clearance through phagocytosis by splenic macrophages or dendritic cells and by induction of apoptosis. Meanwhile, platelet production is inhibited by CD8+ Tc targeting megakaryocytes in the bone marrow. CD4+ T helper cells are important for B cell differentiation into autoantibody secreting plasma cells. Regulatory Tc are essential to secure immune tolerance, and reduced levels have been implicated in the development of ITP. Both Fcγ-receptor-dependent and -independent pathways are involved in the etiology of ITP. In this review, we present a simplified model for the pathogenesis of ITP, in which exposure of platelet surface antigens and a loss of tolerance are required for development of chronic anti-platelet responses. We also suggest that infections may comprise an important trigger for the development of auto-immunity against platelets in ITP. Post-translational modification of autoantigens has been firmly implicated in the development of autoimmune disorders like rheumatoid arthritis and type 1 diabetes. Based on these findings, we propose that post-translational modifications of platelet antigens may also contribute to the pathogenesis of ITP.
Collapse
Affiliation(s)
- Maurice Swinkels
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Maaike Rijkers
- Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Jan Voorberg
- Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Frank W G Leebeek
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - A J Gerard Jansen
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands.,Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| |
Collapse
|
5
|
Abstract
Platelets are specialized cellular elements of the blood that play central roles in physiologic and pathologic processes of hemostasis, wound healing, host defense, thrombosis, inflammation, and tumor metastasis. Activation of platelets is crucial for platelet function that includes a complex interplay of adhesion, signaling molecules, and release of bioactive factors. Transfusion of platelet concentrates is an important treatment component for thrombocytopenia and bleeding. Recent progress in high-throughput mRNA and protein profiling techniques has advanced the understanding of platelet biological functions toward identifying novel platelet-expressed and secreted proteins, analyzing functional changes between normal and pathologic states, and determining the effects of processing and storage on platelet concentrates for transfusion. It is important to understand the different standard methods of platelet preparation and how they differ from the perspective for use as research samples in clinical chemistry. Two simple methods are described here for the preparation of research-scale platelet samples from whole blood, and detailed notes are provided about the methods used for the preparation of platelet concentrates for transfusion.
Collapse
|
6
|
Menter DG, Tucker SC, Kopetz S, Sood AK, Crissman JD, Honn KV. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev 2014; 33:231-69. [PMID: 24696047 PMCID: PMC4186918 DOI: 10.1007/s10555-014-9498-0] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human platelets arise as subcellular fragments of megakaryocytes in bone marrow. The physiologic demand, presence of disease such as cancer, or drug effects can regulate the production circulating platelets. Platelet biology is essential to hemostasis, vascular integrity, angiogenesis, inflammation, innate immunity, wound healing, and cancer biology. The most critical biological platelet response is serving as "First Responders" during the wounding process. The exposure of extracellular matrix proteins and intracellular components occurs after wounding. Numerous platelet receptors recognize matrix proteins that trigger platelet activation, adhesion, aggregation, and stabilization. Once activated, platelets change shape and degranulate to release growth factors and bioactive lipids into the blood stream. This cyclic process recruits and aggregates platelets along with thrombogenesis. This process facilitates wound closure or can recognize circulating pathologic bodies. Cancer cell entry into the blood stream triggers platelet-mediated recognition and is amplified by cell surface receptors, cellular products, extracellular factors, and immune cells. In some cases, these interactions suppress immune recognition and elimination of cancer cells or promote arrest at the endothelium, or entrapment in the microvasculature, and survival. This supports survival and spread of cancer cells and the establishment of secondary lesions to serve as important targets for prevention and therapy.
Collapse
Affiliation(s)
- David G Menter
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Atherothrombosis often underlies coronary artery disease, stroke, and peripheral arterial disease. Antiplatelet drugs have come to the forefront of prophylactic treatment of atherothrombotic disease. Dual antiplatelet therapy of aspirin plus clopidogrel-the current standard-has benefits, but it also has limitations with regard to pharmacologic properties and adverse effects with often severe bleeding complications. For these reasons, within the last decade or so, the investigation of novel antiplatelet targets has prospered. Target identification can be the result of large-scale genomic or proteomic studies, functional genomics in animal models, the genetic analysis of patients with inherited bleeding disorders, or a combination of these techniques.
Collapse
|