1
|
Targovnik AM, Simonin JA, Mc Callum GJ, Smith I, Cuccovia Warlet FU, Nugnes MV, Miranda MV, Belaich MN. Solutions against emerging infectious and noninfectious human diseases through the application of baculovirus technologies. Appl Microbiol Biotechnol 2021; 105:8195-8226. [PMID: 34618205 PMCID: PMC8495437 DOI: 10.1007/s00253-021-11615-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
Abstract
Baculoviruses are insect pathogens widely used as biotechnological tools in different fields of life sciences and technologies. The particular biology of these entities (biosafety viruses 1; large circular double-stranded DNA genomes, infective per se; generally of narrow host range on insect larvae; many of the latter being pests in agriculture) and the availability of molecular-biology procedures (e.g., genetic engineering to edit their genomes) and cellular resources (availability of cell lines that grow under in vitro culture conditions) have enabled the application of baculoviruses as active ingredients in pest control, as systems for the expression of recombinant proteins (Baculovirus Expression Vector Systems—BEVS) and as viral vectors for gene delivery in mammals or to display antigenic proteins (Baculoviruses applied on mammals—BacMam). Accordingly, BEVS and BacMam technologies have been introduced in academia because of their availability as commercial systems and ease of use and have also reached the human pharmaceutical industry, as incomparable tools in the development of biological products such as diagnostic kits, vaccines, protein therapies, and—though still in the conceptual stage involving animal models—gene therapies. Among all the baculovirus species, the Autographa californica multiple nucleopolyhedrovirus has been the most highly exploited in the above utilities for the human-biotechnology field. This review highlights the main achievements (in their different stages of development) of the use of BEVS and BacMam technologies for the generation of products for infectious and noninfectious human diseases. Key points • Baculoviruses can assist as biotechnological tools in human health problems. • Vaccines and diagnosis reagents produced in the baculovirus platform are described. • The use of recombinant baculovirus for gene therapy–based treatment is reviewed.
Collapse
Affiliation(s)
- Alexandra Marisa Targovnik
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina.
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina.
| | - Jorge Alejandro Simonin
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Gregorio Juan Mc Callum
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina
| | - Ignacio Smith
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina
| | - Franco Uriel Cuccovia Warlet
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María Victoria Nugnes
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María Victoria Miranda
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina
| | - Mariano Nicolás Belaich
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
2
|
Gene Therapy: Targeting Cardiomyocyte Proliferation to Repopulate the Ischemic Heart. J Cardiovasc Pharmacol 2021; 78:346-360. [PMID: 34516452 DOI: 10.1097/fjc.0000000000001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Adult mammalian cardiomyocytes show scarce division ability, which makes the heart ineffective in replacing lost contractile cells after ischemic cardiomyopathy. In the past decades, there have been increasing efforts in the search for novel strategies to regenerate the injured myocardium. Among them, gene therapy is one of the most promising ones, based on recent and emerging studies that support the fact that functional cardiomyocyte regeneration can be accomplished by the stimulation and enhancement of the endogenous ability of these cells to achieve cell division. This capacity can be targeted by stimulating several molecules, such as cell cycle regulators, noncoding RNAs, transcription, and metabolic factors. Therefore, the proposed target, together with the selection of the vector used, administration route, and the experimental animal model used in the development of the therapy would determine the success in the clinical field.
Collapse
|
3
|
Parsza CN, Gómez DLM, Simonin JA, Belaich MN, Ghiringhelli PD. Evaluation of the Nucleopolyhedrovirus of Anticarsia gemmatalis as a Vector for Gene Therapy in Mammals. Curr Gene Ther 2021; 21:177-189. [PMID: 33334288 DOI: 10.2174/1566523220999201217155945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Baculoviruses are insect pathogens with important biotechnological applications that transcend their use as biological controllers of agricultural pests. One species, Autographa californica multiple nucleopolhyedrovirus (AcMNPV), has been extensively exploited as a molecular platform to produce recombinant proteins and as a delivery vector for genes in mammals because it can transduce a wide range of mammalian cells and tissues without replicating or producing progeny. METHOD To investigate if the budded virions of Anticarsia gemmatalis multiple nucleopolhyedrovirus (AgMNPV) species has the same ability, the viral genome was modified by homologous recombination into susceptible insect cells to integrate reporter genes and then it was evaluated on mammalian cell lines in a comparative form with respect to equivalent viruses derived from AcMNPV. Besides, the replicative capacity of AgMNPV´s virions in mammals was determined. RESULTS The experiments carried out showed that the recombinant variant of AgMNPV transduces and support the expression of delivered genes but not replicates in mammalian cells. CONCLUSION Consequently, this insect pathogen is proposed as an alternative to non-infectious viruses in humans to explore new approaches in gene therapy and other applications based on the use of mammalian cells.
Collapse
Affiliation(s)
- Cintia N Parsza
- Laboratorio de Ingenieria Genetica y Biologia Celular y Molecular, Area Virosis de Insectos, Instituto de Microbiologia Basica y Aplicada, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Diego L M Gómez
- Laboratorio de Oncologia Molecular, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Jorge A Simonin
- Laboratorio de Ingenieria Genetica y Biologia Celular y Molecular, Area Virosis de Insectos, Instituto de Microbiologia Basica y Aplicada, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Mariano Nicolás Belaich
- Laboratorio de Ingenieria Genetica y Biologia Celular y Molecular, Area Virosis de Insectos, Instituto de Microbiologia Basica y Aplicada, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Pablo D Ghiringhelli
- Laboratorio de Ingenieria Genetica y Biologia Celular y Molecular, Area Virosis de Insectos, Instituto de Microbiologia Basica y Aplicada, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
4
|
Mansouri M, Berger P. Baculovirus for gene delivery to mammalian cells: Past, present and future. Plasmid 2018; 98:1-7. [PMID: 29842913 DOI: 10.1016/j.plasmid.2018.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022]
Abstract
Baculovirus is an insect virus which has been used for more than thirty years for production of recombinant proteins in insect cells. However, baculovirus can also be harnessed for efficient gene delivery to mammalian cells if it is equipped with mammalian promoters. This technology is known as BacMam and has been used for gene delivery to immortalized cell lines, stem cells, and primary cells, as well as for gene delivery in animals. Baculovirus has unique features when compared to mammalian viruses. Besides the fact that it is replication-incompetent and does not integrate into the host genome, it has large capacity for foreign DNA. This capacity can for example be used to deliver multiple genes for reprogramming of stem cells, or for delivery of large homology constructs for genome editing. In this review, we provide a brief overview of baculovirus-based gene delivery and its recent applications in therapy and basic research. We also describe how baculovirus is manipulated for efficient transduction in mammalian cells and we highlight possible future improvements.
Collapse
Affiliation(s)
- Maysam Mansouri
- Paul Scherrer Institute, Biomolecular Research, Applied Molecular Biology, CH-5232 Villigen, Switzerland; ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Philipp Berger
- Paul Scherrer Institute, Biomolecular Research, Applied Molecular Biology, CH-5232 Villigen, Switzerland.
| |
Collapse
|
5
|
Hindriksen S, Bramer AJ, Truong MA, Vromans MJM, Post JB, Verlaan-Klink I, Snippert HJ, Lens SMA, Hadders MA. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells. PLoS One 2017. [PMID: 28640891 PMCID: PMC5480884 DOI: 10.1371/journal.pone.0179514] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The CRISPR/Cas9 system is a highly effective tool for genome editing. Key to robust genome editing is the efficient delivery of the CRISPR/Cas9 machinery. Viral delivery systems are efficient vehicles for the transduction of foreign genes but commonly used viral vectors suffer from a limited capacity in the genetic information they can carry. Baculovirus however is capable of carrying large exogenous DNA fragments. Here we investigate the use of baculoviral vectors as a delivery vehicle for CRISPR/Cas9 based genome-editing tools. We demonstrate transduction of a panel of cell lines with Cas9 and an sgRNA sequence, which results in efficient knockout of all four targeted subunits of the chromosomal passenger complex (CPC). We further show that introduction of a homology directed repair template into the same CRISPR/Cas9 baculovirus facilitates introduction of specific point mutations and endogenous gene tags. Tagging of the CPC recruitment factor Haspin with the fluorescent reporter YFP allowed us to study its native localization as well as recruitment to the cohesin subunit Pds5B.
Collapse
Affiliation(s)
- Sanne Hindriksen
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Arne J. Bramer
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - My Anh Truong
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Martijn J. M. Vromans
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Jasmin B. Post
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Ingrid Verlaan-Klink
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Hugo J. Snippert
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
| | - Susanne M. A. Lens
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
- * E-mail: (SMAL); (MAH)
| | - Michael A. Hadders
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, CG, Utrecht, The Netherlands
- * E-mail: (SMAL); (MAH)
| |
Collapse
|
6
|
Heikura T, Nieminen T, Roschier MM, Karvinen H, Kaikkonen MU, Mähönen AJ, Lesch HP, Rissanen TT, Laitinen OH, Airenne KJ, Ylä-Herttuala S. Baculovirus-mediated vascular endothelial growth factor-D(ΔNΔC) gene transfer induces angiogenesis in rabbit skeletal muscle. J Gene Med 2012; 14:35-43. [PMID: 22162149 DOI: 10.1002/jgm.1637] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Occluded arteries and ischemic tissues cannot always be treated by angioplasty, stenting or by-pass-surgery. Under such circumstances, viral gene therapy may be useful in inducing increased blood supply to ischemic area. There is evidence of improved blood flow in ischemic skeletal muscle and myocardium in both animal and human studies using adenoviral vascular endothelial growth factor (VEGF) gene therapy. However, the expression is transient and repeated gene transfers with the same vector are inefficient due to immune responses. METHODS Different baculoviral vectors pseudotyped with or without vesicular stomatitis virus glycoprotein (VSV-G) and/or carrying woodchuck hepatitis virus post-transcriptional regulatory element (Wpre) were tested both in vitro and in vivo. VEGF-D(ΔNΔC) was used as therapeutic transgene and lacZ as a control. In vivo efficacy was evaluated as capillary enlargement and transgene expression in New Zealand White (NZW) rabbit skeletal muscle. RESULTS A statistically significant capillary enlargement was detected 6 days after gene transfer in transduced areas compared to the control gene transfers with baculovirus and adenovirus encoding β-galactosidase (lacZ). Substantially improved gene transfer efficiency was achieved with a modified baculovirus pseudotyped with VSV-G and carrying Wpre. Dose escalation experiments revealed that either too large volume or too many virus particles caused inflammation and necrosis in the target tissue, whereas 10(9) plaque forming units injected in multiple aliquots resulted in transgene expression with only mild immune reactions. CONCLUSIONS We show the first evidence of biologically significant baculoviral gene transfer in skeletal muscle of NZW rabbits using VEGF-D(ΔNΔC) as a therapeutic transgene.
Collapse
Affiliation(s)
- Tommi Heikura
- Department of Biotechnology and Molecular Medicine, AI Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Functional analysis of the Autographa californica multiple nucleopolyhedrovirus GP64 terminal fusion loops and interactions with membranes. J Virol 2012; 86:9617-28. [PMID: 22740400 DOI: 10.1128/jvi.00813-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) glycoprotein GP64 is the major envelope protein of the budded virus (BV). GP64 is a class III fusion protein that mediates BV attachment to the cell surface and low-pH-triggered membrane fusion between the BV envelope and the endosome membrane during entry. Class III fusion proteins contain terminal looped structures that are believed to interact with membranes. To examine the functions of 3 loops found at the apex of the GP64 postfusion structure, we generated 2-alanine substitutions that scanned the two so-called fusion loops (loop 1 and loop 2) plus an adjacent loop structure (loop 3) that is closely attached to loop 2 and is also found at the apex of the GP64 postfusion structure. We identified essential residues from Y75 to T86 (loop 1) and N149 to H156 (loop 2) that are required for fusion activity, but no essential residues in loop 3. Further analysis revealed that critical fusion loop residues fall within two groups that are associated with either membrane merger (hemifusion) or fusion pore expansion. We next examined the interactions of soluble GP64 proteins and BV with membranes composed of various phospholipids. BV interacted directly with small unilamellar vesicles (SUVs) comprised of phospholipids phosphatidylcholine and phosphatidic acid (PC/PA) or phosphatidylcholine and phosphatidylserine (PC/PS) under neutral and acidic pH. We also examined the interactions of soluble GP64 constructs containing substitutions of the most hydrophobic residues within each of the two fusion loops. We found that a 2-residue substitution in either single loop (loop 1 [positions 81 and 82] or loop 2 [positions 153 and 154]) was not sufficient to substantially reduce the GP64-liposome interaction, but the same substitutions in both fusion loops severely reduced the GP64-liposome association at neutral pH. These results suggest that critical hydrophobic residues in both fusion loops may be involved in the interaction of GP64 with host cellular membranes and direct GP64-membrane interactions may represent a receptor-binding step prior to a low-pH-triggered conformational change.
Collapse
|
8
|
Lee JM, Kawakami N, Mon H, Mitsunobu H, Iiyama K, Ninaki S, Maenaka K, Park EY, Kusakabe T. Establishment of a Bombyx mori nucleopolyhedrovirus (BmNPV) hyper-sensitive cell line from the silkworm e21 strain. Biotechnol Lett 2012; 34:1773-9. [DOI: 10.1007/s10529-012-0971-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
|