1
|
Galinato MGI, Wyant C, Lombardo AL, MacIsaac EK, Rios-Martinez DA, Kimrey CD, Castro AA. Generating globin-like reactivities in [human serum albumin-Fe II(heme)] complex through N-donor ligand addition. J Inorg Biochem 2024; 262:112743. [PMID: 39357192 DOI: 10.1016/j.jinorgbio.2024.112743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Human serum albumin (HSA) has a strong binding affinity for heme b, forming a complex in a 1:1 ratio with the co-factor ([HSA-FeIIIheme]). This system displays spectroscopic and functional properties comparable to globins when chemical derivatives mimicking them are incorporated into the protein matrix. The aim of this study is to generate globin-like systems using [HSA-FeIIIheme] as a protein template and binding N-donor ligands (imidazole, Im; and 1-methylimidazole, 1-MeIm) to construct artificial [HSA-Fe(heme)-(N-donor)] complexes. Their electronic structure and binding thermodynamics are investigated using UV-vis and (synchronous) fluorescence spectroscopies, while ligand-protein interactions are visualized using docking simulations. The imidazole derivatives have a strong affinity for [HSA-FeIIIheme] (K ∼ 104-106), where the spontaneous binding of Im and 1-MeIm are dominated by entropic and enthalpic effects, respectively. The reduced form of the [HSA-Fe(heme)-(N-donor)] complexes demonstrate nitrite reductase (NiR) activity similar to that observed in globins, but with significant differences in their rates. [HSA-FeIIheme-(1-MeIm)] reduces nitrite ∼4× faster than the Im analogue, and ∼ 30× faster than myoglobin (Mb). The enhanced NiR activity of [HSA-FeIIheme-(1-MeIm)] is a cumulative effect of several factors including a slightly expanded and more optimal heme binding pocket, nearby residues as possible proton sources, and a H-bonding interaction between 1-MeIm and residues Arg160 and Lys181 that may have a long-distance influence on the heme π electron density.
Collapse
Affiliation(s)
- Mary Grace I Galinato
- Department of Chemistry & Physics, Jacksonville University, 2800 University Blvd N, Jacksonville, FL 32211, United States; School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States.
| | - Christopher Wyant
- School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States
| | - Ashley L Lombardo
- School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States
| | - Ethan K MacIsaac
- Department of Chemistry & Physics, Jacksonville University, 2800 University Blvd N, Jacksonville, FL 32211, United States
| | - Daniella A Rios-Martinez
- School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States
| | - Christopher D Kimrey
- School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States
| | - Alexandra Alfonso Castro
- School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States
| |
Collapse
|
2
|
Doğru EK, Sakallı T, Liu G, Sayers Z, Surmeli NB. Small angle X-ray scattering analysis of thermophilic cytochrome P450 CYP119 and the effects of the N-terminal histidine tag. Int J Biol Macromol 2024; 265:131026. [PMID: 38522710 DOI: 10.1016/j.ijbiomac.2024.131026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Combining size exclusion chromatography-small angle X-ray scattering (SEC-SAXS) and molecular dynamics (MD) analysis is a promising approach to investigate protein behavior in solution, particularly for understanding conformational changes due to substrate binding in cytochrome P450s (CYPs). This study investigates conformational changes in CYP119, a thermophilic CYP from Sulfolobus acidocaldarius that exhibits structural flexibility similar to mammalian CYPs. Although the crystal structure of ligand-free (open state) and ligand-bound (closed state) forms of CYP119 is known, the overall structure of the enzyme in solution has not been explored until now. It was found that theoretical scattering profiles from the crystal structures of CYP119 did not align with the SAXS data, but conformers from MD simulations, particularly starting from the open state (46 % of all frames), agreed well. Interestingly, a small percentage of closed-state conformers also fit the data (9 %), suggesting ligand-free CYP119 samples ligand-bound conformations. Ab initio SAXS models for N-His tagged CYP119 revealed a tail-like unfolded structure impacting protein flexibility, which was confirmed by in silico modeling. SEC-SAXS analysis of N-His CYP119 indicated pentameric structures in addition to monomers in solution, affecting the stability and activity of the enzyme. This study adds insights into the conformational dynamics of CYP119 in solution.
Collapse
Affiliation(s)
- Ekin Kestevur Doğru
- İzmir Institute of Technology, Faculty of Engineering, Department of Bioengineering, 35430 Urla, Izmir, Türkiye
| | - Tuğçe Sakallı
- İzmir Institute of Technology, Faculty of Engineering, Department of Bioengineering, 35430 Urla, Izmir, Türkiye
| | - Goksin Liu
- Sabancı University, Faculty of Engineering and Natural Sciences, Orhanli, Tuzla 34956, Istanbul, Türkiye
| | - Zehra Sayers
- Sabancı University, Faculty of Engineering and Natural Sciences, Orhanli, Tuzla 34956, Istanbul, Türkiye
| | - Nur Basak Surmeli
- İzmir Institute of Technology, Faculty of Engineering, Department of Bioengineering, 35430 Urla, Izmir, Türkiye.
| |
Collapse
|
3
|
Wang P. Nanoscale Engineering for Smart Biocatalysts with Fine-Tuned Properties and Functionalities. Top Catal 2012. [DOI: 10.1007/s11244-012-9904-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|