1
|
Almeida D, Turecki G. Profiling cell-type specific gene expression in post-mortem human brain samples through laser capture microdissection. Methods 2022; 207:3-10. [PMID: 36064002 DOI: 10.1016/j.ymeth.2022.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The transcriptome of a cell constitutes an essential piece of cellular identity and contributes to the multifaceted complexity and heterogeneity of cell-types within the mammalian brain. Thus, while a wealth of studies have investigated transcriptomic alterations underlying the pathophysiology of diseases of the brain, their use of bulk-tissue homogenates makes it difficult to tease apart whether observed differences are explained by disease state or cellular composition. Cell-type-specific enrichment strategies are, therefore, crucial in the context of gene expression profiling. Laser capture microdissection (LCM) is one such strategy that allows for the capture of specific cell-types, or regions of interest, under microscopic visualization. In this review, we focus on using LCM for cell-type specific gene expression profiling in post-mortem human brain samples. We begin with a discussion of various LCM systems, followed by a walk-through of each step in the LCM to gene expression profiling workflow and a description of some of the limitations associated with LCM. Throughout the review, we highlight important considerations when using LCM with post-mortem human brain samples. Whenever applicable, commercially available kits that have proven successful in the context of LCM with post-mortem human brain samples are described.
Collapse
Affiliation(s)
- Daniel Almeida
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC, Canada, H4H 1R3
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC, Canada, H4H 1R3; Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A 1A1.
| |
Collapse
|
2
|
McKinney B, Ding Y, Lewis DA, Sweet RA. DNA methylation as a putative mechanism for reduced dendritic spine density in the superior temporal gyrus of subjects with schizophrenia. Transl Psychiatry 2017; 7:e1032. [PMID: 28195572 PMCID: PMC5438028 DOI: 10.1038/tp.2016.297] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/13/2016] [Indexed: 01/11/2023] Open
Abstract
Reduced dendritic spine density (DSD) in cortical layer 3 of the superior temporal gyrus (STG), and multiple other brain regions, is consistently observed in postmortem studies of schizophrenia (SZ). Elucidating the molecular mechanisms of this intermediate phenotype holds promise for understanding SZ pathophysiology, identifying SZ treatment targets and developing animal models. DNA methylation (DNAm), the addition of a methyl group to a cytosine nucleotide, regulates gene transcription and is a strong candidate for such a mechanism. We tested the hypothesis that DNAm correlates with DSD in the human STG and that this relationship is disrupted in SZ. We used the Illumina Infinium HumanMethylation450 Beadchip Array to quantify DNAm on a genome-wide scale in the postmortem STG from 22 SZ subjects and matched non-psychiatric control (NPC) subjects; DSD measures were available for 17 of the 22 subject pairs. We found DNAm to correlate with DSD at more sites than expected by chance in NPC, but not SZ, subjects. In addition, we show that the slopes of the linear DNAm-DSD correlations differed between SZ and NPC subjects at more sites than expected by chance. From these data, we identified 2 candidate genes for mediating DSD abnormalities in SZ: brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2) and discs large, Drosophila, homolog of, 1 (DLG1). Together, these data suggest that altered DNAm in SZ may be a mechanism for SZ-related DSD reductions.
Collapse
Affiliation(s)
- B McKinney
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - D A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - R A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA,Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA,Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA,Department of Psychiatry, Neurology and VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), Biomedical Science Tower, Room W-1645, 3811 O'Hara Street, Pittsburgh, PA 15213, USA. E-mail:
| |
Collapse
|
3
|
McKinney BC, Lin CW, Oh H, Tseng GC, Lewis DA, Sibille E. Hypermethylation of BDNF and SST Genes in the Orbital Frontal Cortex of Older Individuals: A Putative Mechanism for Declining Gene Expression with Age. Neuropsychopharmacology 2015; 40:2604-13. [PMID: 25881116 PMCID: PMC4569950 DOI: 10.1038/npp.2015.107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/20/2015] [Accepted: 04/08/2015] [Indexed: 12/29/2022]
Abstract
Expression of brain-derived neurotrophic factor (BDNF) and somatostatin (SST) mRNAs in the brain decreases progressively and robustly with age, and lower BDNF and SST expression in the brain has been observed in many brain disorders. BDNF is known to regulate SST expression; however, the mechanisms underlying decreased expression of both genes are not understood. DNA methylation (DNAm) is an attractive candidate mechanism. To investigate the contribution of DNAm to the age-related decline in BDNF and SST expression, the Illumina Infinium HumanMethylation450 Beadchip Array was used to quantify DNAm of BDNF (26 CpG loci) and SST (9 CpG loci) in the orbital frontal cortices of postmortem brains from 22 younger (age <42 years) and 22 older individuals (age >60 years) with known age-dependent BDNF and SST expression differences. Relative to the younger individuals, 10 of the 26 CpG loci in BDNF and 8 of the 9 CpG loci in SST were significantly hypermethylated in the older individuals. DNAm in BDNF exons/promoters I, II, and IV negatively correlated with BDNF expression (r=-0.37, p<0.05; r=-0.40, p<0.05; r=-0.24, p=0.07), and DNAm in SST 5' UTR and first exon/intron negatively correlated with SST expression (r=-0.48, p<0.01; r=-0.63, p<0.001), respectively. An expanded set of BDNF- and GABA-related genes exhibited similar age-related changes in DNAm and correlation with gene expression. These results suggest that DNAm may be a proximal mechanism for decreased expression of BDNF, SST, and other BDNF- and GABA-related genes with brain aging and, by extension, for brain disorders in which their expression is decreased.
Collapse
Affiliation(s)
- Brandon C McKinney
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Chien-Wei Lin
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hyunjung Oh
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Etienne Sibille
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Campbell Family Mental Health Research Institute of CAMH, Departments of Psychiatry, Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health (CAMH), 250 College Street, Room 134, Toronto, ON M5T 1R8, Canada, Tel: +1 416 535 8501, ext 36571, E-mail:
| |
Collapse
|
4
|
Frost AR, Eltoum I, Siegal GP, Emmert‐Buck MR, Tangrea MA. Laser Microdissection. ACTA ACUST UNITED AC 2015; 112:25A.1.1-25A.1.30. [DOI: 10.1002/0471142727.mb25a01s112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andra R. Frost
- Department of Pathology, University of Alabama at Birmingham Birmingham Alabama
| | - Isam‐Eldin Eltoum
- Department of Pathology, University of Alabama at Birmingham Birmingham Alabama
| | - Gene P. Siegal
- Department of Pathology, University of Alabama at Birmingham Birmingham Alabama
| | | | - Michael A. Tangrea
- Alvin & Lois Lapidus Cancer Institute, Sinai Hospital Baltimore Maryland
| |
Collapse
|