1
|
Zhang L, Ye JW, Li G, Park H, Luo H, Lin Y, Li S, Yang W, Guan Y, Wu F, Huang W, Wu Q, Scrutton NS, Nielsen J, Chen GQ. A long-term growth stable Halomonas sp. deleted with multiple transposases guided by its metabolic network model Halo-ecGEM. Metab Eng 2024; 84:95-108. [PMID: 38901556 DOI: 10.1016/j.ymben.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Microbial instability is a common problem during bio-production based on microbial hosts. Halomonas bluephagenesis has been developed as a chassis for next generation industrial biotechnology (NGIB) under open and unsterile conditions. However, the hidden genomic information and peculiar metabolism have significantly hampered its deep exploitation for cell-factory engineering. Based on the freshly completed genome sequence of H. bluephagenesis TD01, which reveals 1889 biological process-associated genes grouped into 84 GO-slim terms. An enzyme constrained genome-scale metabolic model Halo-ecGEM was constructed, which showed strong ability to simulate fed-batch fermentations. A visible salt-stress responsive landscape was achieved by combining GO-slim term enrichment and CVT-based omics profiling, demonstrating that cells deploy most of the protein resources by force to support the essential activity of translation and protein metabolism when exposed to salt stress. Under the guidance of Halo-ecGEM, eight transposases were deleted, leading to a significantly enhanced stability for its growth and bioproduction of various polyhydroxyalkanoates (PHA) including 3-hydroxybutyrate (3HB) homopolymer PHB, 3HB and 3-hydroxyvalerate (3HV) copolymer PHBV, as well as 3HB and 4-hydroxyvalerate (4HB) copolymer P34HB. This study sheds new light on the metabolic characteristics and stress-response landscape of H. bluephagenesis, achieving for the first time to construct a long-term growth stable chassis for industrial applications. For the first time, it was demonstrated that genome encoded transposons are the reason for microbial instability during growth in flasks and fermentors.
Collapse
Affiliation(s)
- Lizhan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gang Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Helen Park
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hao Luo
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Yina Lin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shaowei Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weinan Yang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuying Guan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fuqing Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wuzhe Huang
- PhaBuilder Biotechnol Co. Ltd., PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing, 101309, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Nigel S Scrutton
- Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen N, Denmark.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; MOE Key Laboratory for Industrial Biocatalysts, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Ajjolli Nagaraja A, Fontaine N, Delsaut M, Charton P, Damour C, Offmann B, Grondin-Perez B, Cadet F. Flux prediction using artificial neural network (ANN) for the upper part of glycolysis. PLoS One 2019; 14:e0216178. [PMID: 31067238 PMCID: PMC6505829 DOI: 10.1371/journal.pone.0216178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023] Open
Abstract
The selection of optimal enzyme concentration in multienzyme cascade reactions for the highest product yield in practice is very expensive and time-consuming process. The modelling of biological pathways is a difficult process because of the complexity of the system. The mathematical modelling of the system using an analytical approach depends on the many parameters of enzymes which rely on tedious and expensive experiments. The artificial neural network (ANN) method has been successively applied in different fields of science to perform complex functions. In this study, ANN models were trained to predict the flux for the upper part of glycolysis as inferred by NADH consumption, using four enzyme concentrations i.e., phosphoglucoisomerase, phosphofructokinase, fructose-bisphosphate-aldolase, triose-phosphate-isomerase. Out of three ANN algorithms, the neuralnet package with two activation functions, “logistic” and “tanh” were implemented. The prediction of the flux was very efficient: RMSE and R2 were 0.847, 0.93 and 0.804, 0.94 respectively for logistic and tanh functions using a cross validation procedure. This study showed that a systemic approach such as ANN could be used for accurate prediction of the flux through the metabolic pathway. This could help to save a lot of time and costs, particularly from an industrial perspective. The R-code is available at: https://github.com/DSIMB/ANN-Glycolysis-Flux-Prediction.
Collapse
Affiliation(s)
- Anamya Ajjolli Nagaraja
- LE2P, Laboratory of Energy, Electronics and Processes EA 4079, Faculty of Sciences and Technology, University of La Reunion, France
| | | | - Mathieu Delsaut
- LE2P, Laboratory of Energy, Electronics and Processes EA 4079, Faculty of Sciences and Technology, University of La Reunion, France
| | - Philippe Charton
- DSIMB, INSERM, UMR S-1134, Laboratory of ExcellenceLABEX GR, Faculty of Sciences and Technology, University of La Reunion & University Paris Diderot, Paris, France
| | - Cedric Damour
- LE2P, Laboratory of Energy, Electronics and Processes EA 4079, Faculty of Sciences and Technology, University of La Reunion, France
| | - Bernard Offmann
- Université de Nantes, Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 6286 CNRS, UFR Sciences et Techniques, chemin de la Houssinière, France
| | - Brigitte Grondin-Perez
- LE2P, Laboratory of Energy, Electronics and Processes EA 4079, Faculty of Sciences and Technology, University of La Reunion, France
| | - Frederic Cadet
- DSIMB, INSERM, UMR S-1134, Laboratory of ExcellenceLABEX GR, Faculty of Sciences and Technology, University of La Reunion & University Paris Diderot, Paris, France
- * E-mail:
| |
Collapse
|
3
|
Çakır T, Kökrek E, Avşar G, Abdik E, Pir P. Next-Generation Genome-Scale Models Incorporating Multilevel 'Omics Data: From Yeast to Human. Methods Mol Biol 2019; 2049:347-363. [PMID: 31602621 DOI: 10.1007/978-1-4939-9736-7_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Genome-scale modelling in eukaryotes has been pioneered by the yeast Saccharomyces cerevisiae. Early metabolic networks have been reconstructed based on genome sequence and information accumulated in the literature on biochemical reactions. Protein-protein interaction networks have been constructed based on experimental observations such as yeast-2-hybrid method. Gene regulatory networks were based on a variety of data types, including information on TF-promoter binding and gene coexpression. The aforementioned networks have been improved gradually, and methods for their integration were developed. Incorporation of omics data including genomics, metabolomics, transcriptomics, fluxome, and phosphoproteome led to next-generation genome-scale models. The methods tested on yeast have later been implemented in human, further, cellular components found to be important in yeast physiology under (ab)normal conditions, and (dis)regulation mechanisms in yeast shed light to the healthy and disease states in human. This chapter provides a historical perspective on next-generation genome-scale models incorporating multilevel 'omics data, from yeast to human.
Collapse
Affiliation(s)
- Tunahan Çakır
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Emel Kökrek
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Gülben Avşar
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Ecehan Abdik
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Pınar Pir
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
4
|
Chen Y, Li G, Nielsen J. Genome-Scale Metabolic Modeling from Yeast to Human Cell Models of Complex Diseases: Latest Advances and Challenges. Methods Mol Biol 2019; 2049:329-345. [PMID: 31602620 DOI: 10.1007/978-1-4939-9736-7_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Genome-scale metabolic models (GEMs) are mathematical models that enable systematic analysis of metabolism. This modeling concept has been applied to study the metabolism of many organisms including the eukaryal model organism, the yeast Saccharomyces cerevisiae, that also serves as an important cell factory for production of fuels and chemicals. With the application of yeast GEMs, our knowledge of metabolism is increasing. Therefore, GEMs have also been used for modeling human cells to study metabolic diseases. Here we introduce the concept of GEMs and provide a protocol for reconstructing GEMs. Besides, we show the historic development of yeast GEMs and their applications. Also, we review human GEMs as well as their uses in the studies of complex diseases.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Gang Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
5
|
Bauer E, Thiele I. From metagenomic data to personalized in silico microbiotas: predicting dietary supplements for Crohn's disease. NPJ Syst Biol Appl 2018; 4:27. [PMID: 30083388 PMCID: PMC6068170 DOI: 10.1038/s41540-018-0063-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
Crohn's disease (CD) is associated with an ecological imbalance of the intestinal microbiota, consisting of hundreds of species. The underlying complexity as well as individual differences between patients contributes to the difficulty to define a standardized treatment. Computational modeling can systematically investigate metabolic interactions between gut microbes to unravel mechanistic insights. In this study, we integrated metagenomic data of CD patients and healthy controls with genome-scale metabolic models into personalized in silico microbiotas. We predicted short chain fatty acid (SFCA) levels for patients and controls, which were overall congruent with experimental findings. As an emergent property, low concentrations of SCFA were predicted for CD patients and the SCFA signatures were unique to each patient. Consequently, we suggest personalized dietary treatments that could improve each patient's SCFA levels. The underlying modeling approach could aid clinical practice to find dietary treatment and guide recovery by rationally proposing food aliments.
Collapse
Affiliation(s)
- Eugen Bauer
- Luxembourg Centre for Systems Biomedicine, Universite du Luxembourg, Esch-sur-Alzette, Luxembourg, L-4362 Luxembourg
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, Universite du Luxembourg, Esch-sur-Alzette, Luxembourg, L-4362 Luxembourg
| |
Collapse
|
6
|
Biosynthesis of therapeutic natural products using synthetic biology. Adv Drug Deliv Rev 2016; 105:96-106. [PMID: 27094795 DOI: 10.1016/j.addr.2016.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/24/2016] [Accepted: 04/10/2016] [Indexed: 02/08/2023]
Abstract
Natural products are a group of bioactive structurally diverse chemicals produced by microorganisms and plants. These molecules and their derivatives have contributed to over a third of the therapeutic drugs produced in the last century. However, over the last few decades traditional drug discovery pipelines from natural products have become far less productive and far more expensive. One recent development with promise to combat this trend is the application of synthetic biology to therapeutic natural product biosynthesis. Synthetic biology is a young discipline with roots in systems biology, genetic engineering, and metabolic engineering. In this review, we discuss the use of synthetic biology to engineer improved yields of existing therapeutic natural products. We further describe the use of synthetic biology to combine and express natural product biosynthetic genes in unprecedented ways, and how this holds promise for opening up completely new avenues for drug discovery and production.
Collapse
|
7
|
Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae. Metab Eng Commun 2016; 3:153-163. [PMID: 29468121 PMCID: PMC5779720 DOI: 10.1016/j.meteno.2016.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/17/2016] [Accepted: 05/10/2016] [Indexed: 01/23/2023] Open
Abstract
Genome-scale metabolic models (GEMs) can be used to evaluate genotype-phenotype relationships and their application to microbial strain engineering is increasing in popularity. Some of the algorithms used to simulate the phenotypes of mutant strains require the determination of a wild-type flux distribution. However, the accuracy of this reference, when calculated with flux balance analysis, has not been studied in detail before. Here, the wild-type simulations of selected GEMs for Saccharomyces cerevisiae have been analysed and most of the models tested predicted erroneous fluxes in central pathways, especially in the pentose phosphate pathway. Since the problematic fluxes were mostly related to areas of the metabolism consuming or producing NADPH/NADH, we have manually curated all reactions including these cofactors by forcing the use of NADPH/NADP+ in anabolic reactions and NADH/NAD+ for catabolic reactions. The curated models predicted more accurate flux distributions and performed better in the simulation of mutant phenotypes. The flux distributions of the genome-scale models of Saccharomyces cerevisiae were evaluated Most of the tested models showed fluxes inconsistent with experimental data A manual curation process was performed on all reactions including NADH or NADPH The curated models showed flux distributions more consistent with experimental data Phenotype simulations improved when the curated flux distributions were used
Collapse
|
8
|
Sánchez BJ, Nielsen J. Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr Biol (Camb) 2016; 7:846-58. [PMID: 26079294 DOI: 10.1039/c5ib00083a] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome scale models (GEMs) have enabled remarkable advances in systems biology, acting as functional databases of metabolism, and as scaffolds for the contextualization of high-throughput data. In the case of Saccharomyces cerevisiae (budding yeast), several GEMs have been published and are currently used for metabolic engineering and elucidating biological interactions. Here we review the history of yeast's GEMs, focusing on recent developments. We study how these models are typically evaluated, using both descriptive and predictive metrics. Additionally, we analyze the different ways in which all levels of omics data (from gene expression to flux) have been integrated in yeast GEMs. Relevant conclusions and current challenges for both GEM evaluation and omic integration are highlighted.
Collapse
Affiliation(s)
- Benjamín J Sánchez
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden.
| | | |
Collapse
|
9
|
Mahadevan R, von Kamp A, Klamt S. Genome-scale strain designs based on regulatory minimal cut sets. Bioinformatics 2015; 31:2844-51. [PMID: 25913205 DOI: 10.1093/bioinformatics/btv217] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/16/2015] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Stoichiometric and constraint-based methods of computational strain design have become an important tool for rational metabolic engineering. One of those relies on the concept of constrained minimal cut sets (cMCSs). However, as most other techniques, cMCSs may consider only reaction (or gene) knockouts to achieve a desired phenotype. RESULTS We generalize the cMCSs approach to constrained regulatory MCSs (cRegMCSs), where up/downregulation of reaction rates can be combined along with reaction deletions. We show that flux up/downregulations can virtually be treated as cuts allowing their direct integration into the algorithmic framework of cMCSs. Because of vastly enlarged search spaces in genome-scale networks, we developed strategies to (optionally) preselect suitable candidates for flux regulation and novel algorithmic techniques to further enhance efficiency and speed of cMCSs calculation. We illustrate the cRegMCSs approach by a simple example network and apply it then by identifying strain designs for ethanol production in a genome-scale metabolic model of Escherichia coli. The results clearly show that cRegMCSs combining reaction deletions and flux regulations provide a much larger number of suitable strain designs, many of which are significantly smaller relative to cMCSs involving only knockouts. Furthermore, with cRegMCSs, one may also enable the fine tuning of desired behaviours in a narrower range. The new cRegMCSs approach may thus accelerate the implementation of model-based strain designs for the bio-based production of fuels and chemicals. AVAILABILITY AND IMPLEMENTATION MATLAB code and the examples can be downloaded at http://www.mpi-magdeburg.mpg.de/projects/cna/etcdownloads.html. CONTACT krishna.mahadevan@utoronto.ca or klamt@mpi-magdeburg.mpg.de SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S3E5, Canada, Institute of Biomaterials and Biomedical Engineering, Toronto, ON, M5S 3G9, Canada and
| | - Axel von Kamp
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, D-39106, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, D-39106, Germany
| |
Collapse
|
10
|
Perturbation Experiments: Approaches for Metabolic Pathway Analysis in Bioreactors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 152:91-136. [PMID: 25981857 DOI: 10.1007/10_2015_326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the last decades, targeted metabolic engineering of microbial cells has become one of the major tools in bioprocess design and optimization. For successful application, a detailed knowledge is necessary about the relevant metabolic pathways and their regulation inside the cells. Since in vitro experiments cannot display process conditions and behavior properly, process data about the cells' metabolic state have to be collected in vivo. For this purpose, special techniques and methods are necessary. Therefore, most techniques enabling in vivo characterization of metabolic pathways rely on perturbation experiments, which can be divided into dynamic and steady-state approaches. To avoid any process disturbance, approaches which enable perturbation of cell metabolism in parallel to the continuing production process are reasonable. Furthermore, the fast dynamics of microbial production processes amplifies the need of parallelized data generation. These points motivate the development of a parallelized approach for multiple metabolic perturbation experiments outside the operating production reactor. An appropriate approach for in vivo characterization of metabolic pathways is presented and applied exemplarily to a microbial L-phenylalanine production process on a 15 L-scale.
Collapse
|
11
|
Quarterman J, Kim SR, Kim PJ, Jin YS. Enhanced hexose fermentation by Saccharomyces cerevisiae through integration of stoichiometric modeling and genetic screening. J Biotechnol 2014; 194:48-57. [PMID: 25435378 DOI: 10.1016/j.jbiotec.2014.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/10/2014] [Accepted: 11/20/2014] [Indexed: 12/16/2022]
Abstract
In order to determine beneficial gene deletions for ethanol production by the yeast Saccharomyces cerevisiae, we performed an in silico gene deletion experiment based on a genome-scale metabolic model. Genes coding for two oxidative phosphorylation reactions (cytochrome c oxidase and ubiquinol cytochrome c reductase) were identified by the model-based simulation as potential deletion targets for enhancing ethanol production and maintaining acceptable overall growth rate in oxygen-limited conditions. Since the two target enzymes are composed of multiple subunits, we conducted a genetic screening study to evaluate the in silico results and compare the effect of deleting various portions of the respiratory enzyme complexes. Over two-thirds of the knockout mutants identified by the in silico study did exhibit experimental behavior in qualitative agreement with model predictions, but the exceptions illustrate the limitation of using a purely stoichiometric model-based approach. Furthermore, there was a substantial quantitative variation in phenotype among the various respiration-deficient mutants that were screened in this study, and three genes encoding respiratory enzyme subunits were identified as the best knockout targets for improving hexose fermentation in microaerobic conditions. Specifically, deletion of either COX9 or QCR9 resulted in higher ethanol production rates than the parental strain by 37% and 27%, respectively, with slight growth disadvantages. Also, deletion of QCR6 led to improved ethanol production rate by 24% with no growth disadvantage. The beneficial effects of these gene deletions were consistently demonstrated in different strain backgrounds and with four common hexoses. The combination of stoichiometric modeling and genetic screening using a systematic knockout collection was useful for narrowing a large set of gene targets and identifying targets of interest.
Collapse
Affiliation(s)
- Josh Quarterman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Soo Rin Kim
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; School of Food Science and Biotechnology, Kyungpook National University, Buk-Gu, Daegu 702-701, Republic of Korea
| | - Pan-Jun Kim
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784, Republic of Korea; Department of Physics, POSTECH, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
12
|
Montagud A, Gamermann D, Fernández de Córdoba P, Urchueguía JF. Synechocystis sp. PCC6803 metabolic models for the enhanced production of hydrogen. Crit Rev Biotechnol 2013; 35:184-98. [PMID: 24090244 DOI: 10.3109/07388551.2013.829799] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the present economy, difficulties to access energy sources are real drawbacks to maintain our current lifestyle. In fact, increasing interests have been gathered around efficient strategies to use energy sources that do not generate high CO2 titers. Thus, science-funding agencies have invested more resources into research on hydrogen among other biofuels as interesting energy vectors. This article reviews present energy challenges and frames it into the present fuel usage landscape. Different strategies for hydrogen production are explained and evaluated. Focus is on biological hydrogen production; fermentation and photon-fuelled hydrogen production are compared. Mathematical models in biology can be used to assess, explore and design production strategies for industrially relevant metabolites, such as biofuels. We assess the diverse construction and uses of genome-scale metabolic models of cyanobacterium Synechocystis sp. PCC6803 to efficiently obtain biofuels. This organism has been studied as a potential photon-fuelled production platform for its ability to grow from carbon dioxide, water and photons, on simple culture media. Finally, we review studies that propose production strategies to weigh this organism's viability as a biofuel production platform. Overall, the work presented in this review unveils the industrial capabilities of cyanobacterium Synechocystis sp. PCC6803 to evolve interesting metabolites as a clean biofuel production platform.
Collapse
Affiliation(s)
- Arnau Montagud
- Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València , Valencia , Spain
| | | | | | | |
Collapse
|
13
|
Kondo A, Ishii J, Hara KY, Hasunuma T, Matsuda F. Development of microbial cell factories for bio-refinery through synthetic bioengineering. J Biotechnol 2013; 163:204-16. [DOI: 10.1016/j.jbiotec.2012.05.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/10/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022]
|
14
|
Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes. Appl Biochem Biotechnol 2012; 169:55-65. [PMID: 23138337 DOI: 10.1007/s12010-012-9951-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/30/2012] [Indexed: 12/22/2022]
Abstract
Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.
Collapse
|