1
|
Sokolov V, Kyrchanova O, Klimenko N, Fedotova A, Ibragimov A, Maksimenko O, Georgiev P. New Drosophila promoter-associated architectural protein Mzfp1 interacts with CP190 and is required for housekeeping gene expression and insulator activity. Nucleic Acids Res 2024; 52:6886-6905. [PMID: 38769058 PMCID: PMC11229372 DOI: 10.1093/nar/gkae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
In Drosophila, a group of zinc finger architectural proteins recruits the CP190 protein to the chromatin, an interaction that is essential for the functional activity of promoters and insulators. In this study, we describe a new architectural C2H2 protein called Madf and Zinc-Finger Protein 1 (Mzfp1) that interacts with CP190. Mzfp1 has an unusual structure that includes six C2H2 domains organized in a C-terminal cluster and two tandem MADF domains. Mzfp1 predominantly binds to housekeeping gene promoters located in both euchromatin and heterochromatin genome regions. In vivo mutagenesis studies showed that Mzfp1 is an essential protein, and both MADF domains and the CP190 interaction region are required for its functional activity. The C2H2 cluster is sufficient for the specific binding of Mzfp1 to regulatory elements, while the second MADF domain is required for Mzfp1 recruitment to heterochromatin. Mzfp1 binds to the proximal part of the Fub boundary that separates regulatory domains of the Ubx and abd-A genes in the Bithorax complex. Mzfp1 participates in Fub functions in cooperation with the architectural proteins Pita and Su(Hw). Thus, Mzfp1 is a new architectural C2H2 protein involved in the organization of active promoters and insulators in Drosophila.
Collapse
Affiliation(s)
- Vladimir Sokolov
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna Fedotova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
2
|
Wnt signaling regulates hepatocyte cell division by a transcriptional repressor cascade. Proc Natl Acad Sci U S A 2022; 119:e2203849119. [PMID: 35867815 PMCID: PMC9335208 DOI: 10.1073/pnas.2203849119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As a general model for cell cycle control, repressors keep cells quiescent until growth signals remove the inhibition. For S phase, this is exemplified by the Retinoblastoma (RB) protein and its inactivation. It was unknown whether similar mechanisms operate in the M phase. The Wnt signaling pathway is an important regulator of cell proliferation. Here, we find that Wnt induces expression of the transcription factor Tbx3, which in turn represses mitotic inhibitors E2f7 and E2f8 to permit mitotic progression. Such a cascade of transcriptional repressors may be a general mechanism for cell division control. These findings have implications for tissue homeostasis and disease, as the function for Wnt signaling in mitosis is relevant to its widespread role in stem cells and cancer. Cell proliferation is tightly controlled by inhibitors that block cell cycle progression until growth signals relieve this inhibition, allowing cells to divide. In several tissues, including the liver, cell proliferation is inhibited at mitosis by the transcriptional repressors E2F7 and E2F8, leading to formation of polyploid cells. Whether growth factors promote mitosis and cell cycle progression by relieving the E2F7/E2F8-mediated inhibition is unknown. We report here on a mechanism of cell division control in the postnatal liver, in which Wnt/β-catenin signaling maintains active hepatocyte cell division through Tbx3, a Wnt target gene. The TBX3 protein directly represses transcription of E2f7 and E2f8, thereby promoting mitosis. This cascade of sequential transcriptional repressors, initiated by Wnt signals, provides a paradigm for exploring how commonly active developmental signals impact cell cycle completion.
Collapse
|
3
|
Abstract
Polyploidy is a common and dynamic feature of mature rodent and human hepatocytes. While polyploidization occurs naturally during growth, alterations in the distribution of diploid and polyploid cells in the liver can be indicative of tissue stress or a pathologic state. Here, we describe a method for flow cytometric quantification of ploidy distribution by staining with propidium iodide. We first outline a hepatocyte isolation procedure from mouse liver through a two-step perfusion system for analysis of cellular ploidy. In an alternative approach, we employ a nuclei isolation protocol to assess nuclear ploidy. Finally, we describe how the use of fluorescent cell markers is compatible with these methods and helps retain information on cellular position within the tissue.
Collapse
Affiliation(s)
- Yinhua Jin
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Teni Anbarchian
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Kyrchanova O, Klimenko N, Postika N, Bonchuk A, Zolotarev N, Maksimenko O, Georgiev P. Drosophila architectural protein CTCF is not essential for fly survival and is able to function independently of CP190. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194733. [PMID: 34311130 DOI: 10.1016/j.bbagrm.2021.194733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
CTCF is the most likely ancestor of proteins that contain large clusters of C2H2 zinc finger domains (C2H2) and is conserved among most bilateral organisms. In mammals, CTCF functions as the main architectural protein involved in the organization of topology-associated domains (TADs). In vertebrates and Drosophila, CTCF is involved in the regulation of homeotic genes. Previously, it was found that null mutations in the dCTCF gene died as pharate adults, which failed to eclose from their pupal case, or shortly after hatching of adults. Here, we obtained several new null dCTCF mutations and found that the complete inactivation of dCTCF appears is limited mainly to phenotypic manifestations of the Abd-B gene and fertility of adult flies. Many modifiers that are not associated with an independent phenotypic manifestation can significantly enhance the expressivity of the null dCTCF mutations, indicating that other architectural proteins are able to functionally compensate for dCTCF inactivation in Drosophila. We also mapped the 715-735 aa region of dCTCF as being essential for the interaction with the BTB (Broad-Complex, Tramtrack, and Bric a brac) and microtubule-targeting (M) domains of the CP190 protein, which binds to many architectural proteins. However, the mutational analysis showed that the interaction with CP190 was not important for the functional activity of dCTCF in vivo.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Zolotarev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia.
| |
Collapse
|
5
|
Asma H, Halfon MS. Annotating the Insect Regulatory Genome. INSECTS 2021; 12:591. [PMID: 34209769 PMCID: PMC8305585 DOI: 10.3390/insects12070591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022]
Abstract
An ever-growing number of insect genomes is being sequenced across the evolutionary spectrum. Comprehensive annotation of not only genes but also regulatory regions is critical for reaping the full benefits of this sequencing. Driven by developments in sequencing technologies and in both empirical and computational discovery strategies, the past few decades have witnessed dramatic progress in our ability to identify cis-regulatory modules (CRMs), sequences such as enhancers that play a major role in regulating transcription. Nevertheless, providing a timely and comprehensive regulatory annotation of newly sequenced insect genomes is an ongoing challenge. We review here the methods being used to identify CRMs in both model and non-model insect species, and focus on two tools that we have developed, REDfly and SCRMshaw. These resources can be paired together in a powerful combination to facilitate insect regulatory annotation over a broad range of species, with an accuracy equal to or better than that of other state-of-the-art methods.
Collapse
Affiliation(s)
- Hasiba Asma
- Program in Genetics, Genomics, and Bioinformatics, University at Buffalo-State University of New York, Buffalo, NY 14203, USA;
| | - Marc S. Halfon
- Program in Genetics, Genomics, and Bioinformatics, University at Buffalo-State University of New York, Buffalo, NY 14203, USA;
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- NY State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
6
|
Sabirov M, Kyrchanova O, Pokholkova GV, Bonchuk A, Klimenko N, Belova E, Zhimulev IF, Maksimenko O, Georgiev P. Mechanism and functional role of the interaction between CP190 and the architectural protein Pita in Drosophila melanogaster. Epigenetics Chromatin 2021; 14:16. [PMID: 33752739 PMCID: PMC7983404 DOI: 10.1186/s13072-021-00391-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background Pita is required for Drosophila development and binds specifically to a long motif in active promoters and insulators. Pita belongs to the Drosophila family of zinc-finger architectural proteins, which also includes Su(Hw) and the conserved among higher eukaryotes CTCF. The architectural proteins maintain the active state of regulatory elements and the long-distance interactions between them. In particular, Pita is involved in the formation of several boundaries between regulatory domains that controlled the expression of three hox genes in the Bithorax complex (BX-C). The CP190 protein is recruited to chromatin through interaction with the architectural proteins. Results Using in vitro pull-down analysis, we precisely mapped two unstructured regions of Pita that interact with the BTB domain of CP190. Then we constructed transgenic lines expressing the Pita protein of the wild-type and mutant variants lacking CP190-interacting regions. We have demonstrated that CP190-interacting region of the Pita can maintain nucleosome-free open chromatin and is critical for Pita-mediated enhancer blocking activity in BX-C. At the same time, interaction with CP190 is not required for the in vivo function of the mutant Pita protein, which binds to the same regions of the genome as the wild-type protein. Unexpectedly, we found that CP190 was still associated with the most of genome regions bound by the mutant Pita protein, which suggested that other architectural proteins were continuing to recruit CP190 to these regions. Conclusions The results directly demonstrate role of CP190 in insulation and support a model in which the regulatory elements are composed of combinations of binding sites that interact with several architectural proteins with similar functions. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00391-x.
Collapse
Affiliation(s)
- Marat Sabirov
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 3 4/5 Vavilov St., Moscow, 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 3 4/5 Vavilov St., Moscow, 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Galina V Pokholkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
| | - Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 3 4/5 Vavilov St., Moscow, 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Elena Belova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 3 4/5 Vavilov St., Moscow, 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Igor F Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia.
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 3 4/5 Vavilov St., Moscow, 119334, Russia.
| |
Collapse
|
7
|
Tomoyasu Y, Halfon MS. How to study enhancers in non-traditional insect models. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb212241. [PMID: 32034049 DOI: 10.1242/jeb.212241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcriptional enhancers are central to the function and evolution of genes and gene regulation. At the organismal level, enhancers play a crucial role in coordinating tissue- and context-dependent gene expression. At the population level, changes in enhancers are thought to be a major driving force that facilitates evolution of diverse traits. An amazing array of diverse traits seen in insect morphology, physiology and behavior has been the subject of research for centuries. Although enhancer studies in insects outside of Drosophila have been limited, recent advances in functional genomic approaches have begun to make such studies possible in an increasing selection of insect species. Here, instead of comprehensively reviewing currently available technologies for enhancer studies in established model organisms such as Drosophila, we focus on a subset of computational and experimental approaches that are likely applicable to non-Drosophila insects, and discuss the pros and cons of each approach. We discuss the importance of validating enhancer function and evaluate several possible validation methods, such as reporter assays and genome editing. Key points and potential pitfalls when establishing a reporter assay system in non-traditional insect models are also discussed. We close with a discussion of how to advance enhancer studies in insects, both by improving computational approaches and by expanding the genetic toolbox in various insects. Through these discussions, this Review provides a conceptual framework for studying the function and evolution of enhancers in non-traditional insect models.
Collapse
Affiliation(s)
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
8
|
Zolotarev N, Fedotova A, Kyrchanova O, Bonchuk A, Penin AA, Lando AS, Eliseeva IA, Kulakovskiy IV, Maksimenko O, Georgiev P. Architectural proteins Pita, Zw5,and ZIPIC contain homodimerization domain and support specific long-range interactions in Drosophila. Nucleic Acids Res 2016; 44:7228-41. [PMID: 27137890 PMCID: PMC5009728 DOI: 10.1093/nar/gkw371] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/23/2016] [Indexed: 12/18/2022] Open
Abstract
According to recent models, as yet poorly studied architectural proteins appear to be required for local regulation of enhancer-promoter interactions, as well as for global chromosome organization. Transcription factors ZIPIC, Pita and Zw5 belong to the class of chromatin insulator proteins and preferentially bind to promoters near the TSS and extensively colocalize with cohesin and condensin complexes. ZIPIC, Pita and Zw5 are structurally similar in containing the N-terminal zinc finger-associated domain (ZAD) and different numbers of C2H2-type zinc fingers at the C-terminus. Here we have shown that the ZAD domains of ZIPIC, Pita and Zw5 form homodimers. In Drosophila transgenic lines, these proteins are able to support long-distance interaction between GAL4 activator and the reporter gene promoter. However, no functional interaction between binding sites for different proteins has been revealed, suggesting that such interactions are highly specific. ZIPIC facilitates long-distance stimulation of the reporter gene by GAL4 activator in yeast model system. Many of the genomic binding sites of ZIPIC, Pita and Zw5 are located at the boundaries of topologically associated domains (TADs). Thus, ZAD-containing zinc-finger proteins can be attributed to the class of architectural proteins.
Collapse
Affiliation(s)
- Nikolay Zolotarev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Anna Fedotova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Olga Kyrchanova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Artem Bonchuk
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Aleksey A Penin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia; Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051 Russia; Department of Genetics, Faculty of Biology, Moscow State University, Moscow 119991, Russia
| | - Andrey S Lando
- Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region 141700, Russia Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, Moscow, GSP-1, 119991, Russia
| | - Irina A Eliseeva
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Institutskaya str. 4, Pushchino 142290, Russia
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, Moscow, GSP-1, 119991, Russia Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, Moscow, GSP-1, 119991, Russia
| | - Oksana Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Pavel Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| |
Collapse
|
9
|
Ghavi-Helm Y, Zhao B, Furlong EEM. Chromatin Immunoprecipitation for Analyzing Transcription Factor Binding and Histone Modifications in Drosophila. Methods Mol Biol 2016; 1478:263-277. [PMID: 27730588 DOI: 10.1007/978-1-4939-6371-3_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) is an invaluable technique to assess transcription factor binding and histone modifications in a genome-wide manner, an essential step towards understanding the mechanisms that govern embryonic development. Here, we provide a detailed protocol for all steps involved in generating a ChIP-seq library, starting from embryo collection, fixation, chromatin preparation, immunoprecipitation, and finally library preparation. The protocol is optimized for Drosophila embryos, but can be easily adapted for any model organism. The resulting library is suitable for sequencing on an Illumina HiSeq or MiSeq platform.
Collapse
Affiliation(s)
- Yad Ghavi-Helm
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, D-69117, Germany
| | - Bingqing Zhao
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, D-69117, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, D-69117, Germany.
| |
Collapse
|
10
|
Shah A, Oldenburg A, Collas P. A hyper-dynamic nature of bivalent promoter states underlies coordinated developmental gene expression modules. BMC Genomics 2014; 15:1186. [PMID: 25551786 PMCID: PMC4320513 DOI: 10.1186/1471-2164-15-1186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023] Open
Abstract
Background Chromatin remodeling is crucial for proper programing of developmental gene expression. Recent work provides a dynamic view of post-translational histone modifications during differentiation; however there is little insight on the evolution of combinatorial genome-wide patterns of chromatin marks, excluding an essential aspect of developmental gene regulation. Results We report here a 15-chromatin state Hidden Markov Model which describes changes in chromatin signatures in relation to transcription profiles during differentiation of human pre-adipocytes into adipocytes. We identify nineteen modules of gene expression reflecting multiple waves of transcriptional up- and down-regulation which characterize adipogenic differentiation. From our model, we developed chromatin state matrices fitting each of these transcription modules to show how the complexity and dynamic nature of chromatin signatures relate to expression patterns. Spatial relationships between chromatin states underlie a high-order chromatin organization in differentiating adipocytes. We show the importance of gene expression level in generating diversity in chromatin signatures, and show that the hyper-dynamic nature of H3K4me2/H3K27me3-marked ‘bivalent’ promoter states underlies many of the gene expression patterns associated with adipogenic differentiation. Conclusions Our results reveal the highly dynamic nature of bivalent promoter states within the adipogenic lineage. The data constitute a valuable resource enabling the assessment of possibilities to alter the adipogenic program. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1186) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.
| |
Collapse
|
11
|
Aoki T, Wolle D, Preger-Ben Noon E, Dai Q, Lai EC, Schedl P. Bi-functional cross-linking reagents efficiently capture protein-DNA complexes in Drosophila embryos. Fly (Austin) 2013; 8:43-51. [PMID: 24135698 PMCID: PMC3974894 DOI: 10.4161/fly.26805] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022] Open
Abstract
Chromatin immunoprecipitation (ChIP) is widely used for mapping DNA-protein interactions across eukaryotic genomes in cells, tissues or even whole organisms. Critical to this procedure is the efficient cross-linking of chromatin-associated proteins to DNA sequences that are in close proximity. Since the mid-nineties formaldehyde fixation has been the method of choice. However, some protein-DNA complexes cannot be successfully captured for ChIP using formaldehyde. One such formaldehyde refractory complex is the developmentally regulated insulator factor, Elba. Here we describe a new embryo fixation procedure using the bi-functional cross-linking reagents DSG (disuccinimidyl glutarate) and DSP (dithiobis[succinimidyl propionate). We show that unlike standard formaldehyde fixation protocols, it is possible to capture Elba association with insulator elements in 2-5 h embryos using this new cross-linking procedure. We show that this new cross-linking procedure can also be applied to localize nuclear proteins that are amenable to ChIP using standard formaldehyde cross-linking protocols, and that in the cases tested the enrichment was generally superior to that achieved using formaldehyde cross-linking.
Collapse
Affiliation(s)
- Tsutomu Aoki
- Department of Molecular Biology; Princeton University; Princeton, NJ USA
| | - Daniel Wolle
- Department of Molecular Biology; Princeton University; Princeton, NJ USA
| | | | - Qi Dai
- Department of Developmental Biology; Sloan-Kettering Institute; New York, NY USA
| | - Eric C Lai
- Department of Developmental Biology; Sloan-Kettering Institute; New York, NY USA
| | - Paul Schedl
- Department of Molecular Biology; Princeton University; Princeton, NJ USA
- Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russian Federation
| |
Collapse
|