1
|
Ludhiadch A, Muralidharan A, Balyan R, Munshi A. The molecular basis of platelet biogenesis, activation, aggregation and implications in neurological disorders. Int J Neurosci 2020; 130:1237-1249. [PMID: 32069430 DOI: 10.1080/00207454.2020.1732372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Platelets are anucleated blood constituents, vital for hemostasis and involved in the pathophysiology of several cardiovascular, neurovascular diseases as well as inflammatory processes and metastasis. Over the past few years, the molecular processes that regulate the function of platelets in hemostasis and thrombosis have emerged revealing platelets to be perhaps more complex than may have been expected. The most understood part of platelets is to respond to a blood vessel injury by altering shape, secreting granule contents, and aggregating. These responses, while advantageous for hemostasis, can become detrimental when they root ischemia or infarction. Only a few transcription and signaling factors involved in platelet biogenesis have been identified till date. Platelets encompass an astonishingly complete array of organelles and storage granules including mitochondria, lysosomes, alpha granules, dense granules, a dense tubular system (analogous to the endoplasmic reticulum of nucleated cells); a highly invaginated plasma membrane system known as the open canalicular system (OCS) and large fields of glycogen. Platelets as a model cells to study neurological disorders have been recommended by several researchers since several counterparts exist between platelets and the brain, which make them interesting for studying the neurobiology of various neurological disorders. This review has been compiled with an aim to integrate the latest research on platelet biogenesis, activation and aggregation focusing on the molecular pathways that power and regulate these processes. The dysregulation of important molecular players affecting fluctuating platelet biology and thereby resulting in neurovascular diseases has also been discussed.
Collapse
Affiliation(s)
- Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Abhishek Muralidharan
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Renuka Balyan
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
2
|
Differential protein expression of blood platelet components associated with adverse transfusion reactions. J Proteomics 2019; 194:25-36. [DOI: 10.1016/j.jprot.2018.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
|
3
|
In-depth PtdIns(3,4,5)P 3 signalosome analysis identifies DAPP1 as a negative regulator of GPVI-driven platelet function. Blood Adv 2017; 1:918-932. [PMID: 29242851 DOI: 10.1182/bloodadvances.2017005173] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The class I phosphoinositide 3-kinase (PI3K) isoforms play important roles in platelet priming, activation, and stable thrombus formation. Class I PI3Ks predominantly regulate cell function through their catalytic product, the signaling phospholipid phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], which coordinates the localization and/or activity of a diverse range of binding proteins. Notably, the complete repertoire of these class I PI3K effectors in platelets remains unknown, limiting mechanistic understanding of class I PI3K-mediated control of platelet function. We measured robust agonist-driven PtdIns (3,4,5)P3 generation in human platelets by lipidomic mass spectrometry (MS), and then used affinity-capture coupled to high-resolution proteomic MS to identify the targets of PtdIns (3,4,5)P3 in these cells. We reveal for the first time a diverse platelet PtdIns(3,4,5)P3 interactome, including kinases, signaling adaptors, and regulators of small GTPases, many of which are previously uncharacterized in this cell type. Of these, we show dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1) to be regulated by Src-family kinases and PI3K, while platelets from DAPP1-deficient mice display enhanced thrombus formation on collagen in vitro. This was associated with enhanced platelet α/δ granule secretion and αIIbβ3 integrin activation downstream of the collagen receptor glycoprotein VI. Thus, we present the first comprehensive analysis of the PtdIns(3,4,5)P3 signalosome of human platelets and identify DAPP1 as a novel negative regulator of platelet function. This work provides important new insights into how class I PI3Ks shape platelet function.
Collapse
|
4
|
Wright JR, Amisten S, Goodall AH, Mahaut-Smith MP. Transcriptomic analysis of the ion channelome of human platelets and megakaryocytic cell lines. Thromb Haemost 2016; 116:272-84. [PMID: 27277069 PMCID: PMC5080539 DOI: 10.1160/th15-11-0891] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/30/2016] [Indexed: 11/05/2022]
Abstract
Ion channels have crucial roles in all cell types and represent important therapeutic targets. Approximately 20 ion channels have been reported in human platelets; however, no systematic study has been undertaken to define the platelet channelome. These membrane proteins need only be expressed at low copy number to influence function and may not be detected using proteomic or transcriptomic microarray approaches. In our recent work, quantitative real-time PCR (qPCR) provided key evidence that Kv1.3 is responsible for the voltage-dependent K+ conductance of platelets and megakaryocytes. The present study has expanded this approach to assess relative expression of 402 ion channels and channel regulatory genes in human platelets and three megakaryoblastic/erythroleukaemic cell lines. mRNA levels in platelets are low compared to other blood cells, therefore an improved method of isolating platelets was developed. This used a cocktail of inhibitors to prevent formation of leukocyte-platelet aggregates, and a combination of positive and negative immunomagnetic cell separation, followed by rapid extraction of mRNA. Expression of 34 channel-related transcripts was quantified in platelets, including 24 with unknown roles in platelet function, but that were detected at levels comparable to ion channels with established roles in haemostasis or thrombosis. Trace expression of a further 50 ion channel genes was also detected. More extensive channelomes were detected in MEG-01, CHRF-288-11 and HEL cells (195, 185 and 197 transcripts, respectively), but lacked several channels observed in the platelet. These "channelome" datasets provide an important resource for further studies of ion channel function in the platelet and megakaryocyte.
Collapse
Affiliation(s)
| | | | | | - Martyn P Mahaut-Smith
- Prof. Martyn Mahaut-Smith, PhD, Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LEI 7RH, UK, Tel.: +44 116 229 7135, E-mail:
| |
Collapse
|
5
|
Thiele T, Braune J, Dhople V, Hammer E, Scharf C, Greinacher A, Völker U, Steil L. Proteomic profile of platelets during reconstitution of platelet counts after apheresis. Proteomics Clin Appl 2016; 10:831-8. [DOI: 10.1002/prca.201500134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Thomas Thiele
- Institut für Immunologie und Transfusionsmedizin; University Medicine Greifswald; Greifswald Germany
| | - Johannes Braune
- Institut für Immunologie und Transfusionsmedizin; University Medicine Greifswald; Greifswald Germany
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung; University Medicine Greifswald; Greifswald Germany
| | - Vishnu Dhople
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung; University Medicine Greifswald; Greifswald Germany
| | - Elke Hammer
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung; University Medicine Greifswald; Greifswald Germany
| | - Christian Scharf
- Klinik und Poliklinik für Hals-Nasen-Ohrenkrankheiten, Kopf- und Halschirurgie; University Medicine Greifswald; Greifswald Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin; University Medicine Greifswald; Greifswald Germany
| | - Uwe Völker
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung; University Medicine Greifswald; Greifswald Germany
| | - Leif Steil
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung; University Medicine Greifswald; Greifswald Germany
| |
Collapse
|
6
|
Marcone S, Dervin F, Fitzgerald DJ. Proteomic signatures of antiplatelet drugs: new approaches to exploring drug effects. J Thromb Haemost 2015; 13 Suppl 1:S323-31. [PMID: 26149042 DOI: 10.1111/jth.12943] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Antiplatelet agents represent the mainstay of acute coronary syndrome (ACS) therapy to prevent ischemic events and to improve safety in patients undergoing percutaneous coronary intervention. However, despite the availability of several drugs and the use of dual antiplatelet therapy, the pharmacological response is highly variable with a subset of patients continuing to experience recurrent thrombotic events, revealing a wide variability in platelet response to antiplatelet drugs. Several factors may explain this, including genetic variation and environmental factors. Here we look at the application of proteomic analysis, an approach that provides an integrated readout of these diverse influences.
Collapse
Affiliation(s)
- S Marcone
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - F Dervin
- School of Biomedical and Biomolecular Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - D J Fitzgerald
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Jurk K. Analysis of platelet function and dysfunction. Hamostaseologie 2014; 35:60-72. [PMID: 25482925 DOI: 10.5482/hamo-14-09-0047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/21/2014] [Indexed: 12/17/2022] Open
Abstract
Although platelets act as central players of haemostasis only their cross-talk with other blood cells, plasma factors and the vascular compartment enables the formation of a stable thrombus. Multiple activation processes and complex signalling networks are responsible for appropriate platelet function. Thus, a variety of platelet function tests are available for platelet research and diagnosis of platelet dysfunction. However, universal platelet function tests that are sensitive to all platelet function defects do not exist and therefore diagnostic algorithms for suspected platelet function disorders are still recommended in clinical practice. Based on the current knowledge of human platelet activation this review evaluates point-of-care related screening tests in comparison with specific platelet function assays and focuses on their diagnostic utility in relation to severity of platelet dysfunction. Further, systems biology-based platelet function methods that integrate global and specific analysis of platelet vessel wall interaction (advanced flow chamber devices) and post-translational modifications (platelet proteomics) are presented and their diagnostic potential is addressed.
Collapse
Affiliation(s)
- K Jurk
- Priv.-Doz. Dr. rer. nat. Kerstin Jurk, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany, E-mail:
| |
Collapse
|
8
|
Swanepoel AC, Pretorius E. Erythrocyte-platelet interaction in uncomplicated pregnancy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1848-1860. [PMID: 25470019 DOI: 10.1017/s1431927614013518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Maternal and fetal requirements during uncomplicated pregnancy are associated with changes in the hematopoietic system. Platelets and erythrocytes [red blood cells (RBCs)], and especially their membranes, are involved in coagulation, and their interactions may provide reasons for the changed hematopoietic system during uncomplicated pregnancy. We review literature regarding RBC and platelet membrane structure and interactions during hypercoagulability and hormonal changes. We then study interactions between RBCs and platelets in uncomplicated pregnancy, as their interactions may be one of the reasons for increased hypercoagulability during uncomplicated pregnancy. Scanning electron microscopy was used to study whole blood smears from 90 pregnant females in different phases of pregnancy. Pregnancy-specific interaction was seen between RBCs and platelets. Typically, one or more platelets interacted through platelet spreading and pseudopodia formation with a single RBC. However, multiple interactions with RBCs were also shown for a single platelet. Specific RBC-platelet interaction seen during uncomplicated pregnancy may be caused by increased estrogen and/or increased fibrinogen concentrations. This interaction may contribute to the hypercoagulable state associated with healthy and uncomplicated pregnancy and may also play a fundamental role in gestational thrombocytopenia.
Collapse
Affiliation(s)
- Albe C Swanepoel
- Department of Physiology,School of Medicine, Faculty of Health Sciences,University of Pretoria,Private Bag x323;Arcadia 0007,South Africa
| | - Etheresia Pretorius
- Department of Physiology,School of Medicine, Faculty of Health Sciences,University of Pretoria,Private Bag x323;Arcadia 0007,South Africa
| |
Collapse
|
9
|
Proteomics of apheresis platelet supernatants during routine storage: Gender-related differences. J Proteomics 2014; 112:190-209. [PMID: 25201077 DOI: 10.1016/j.jprot.2014.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/28/2014] [Accepted: 08/31/2014] [Indexed: 12/30/2022]
Abstract
UNLABELLED Proteomics has identified potential pathways involved in platelet storage lesions, which correlate with untoward effects in the recipient, including febrile non-haemolytic reactions. We hypothesize that an additional pathway involves protein mediators that accumulate in the platelet supernatants during routine storage in a donor gender-specific fashion. Apheresis platelet concentrates were collected from 5 healthy males and 5 females and routinely stored. The 14 most abundant plasma proteins were removed and the supernatant proteins from days 1 and 5 were analyzed via 1D-SDS-PAGE/nanoLC-MS/MS, before label-free quantitative proteomics analyses. Findings from a subset of 18 proteins were validated via LC-SRM analyses against stable isotope labeled standards. A total of 503 distinct proteins were detected in the platelet supernatants from the 4 sample groups: female or male donor platelets, either at storage day 1 or 5. Proteomics suggested a storage and gender-dependent impairment of blood coagulation mediators, pro-inflammatory complement components and cytokines, energy and redox metabolic enzymes. The supernatants from female donors demonstrated increased deregulation of structural proteins, extracellular matrix proteins and focal adhesion proteins, possibly indicating storage-dependent platelet activation. Routine storage of platelet concentrates induces changes in the supernatant proteome, which may have effects on the transfused patient, some of which are related to donor gender. BIOLOGICAL SIGNIFICANCE The rationale behind this study is that protein components in platelet releasates have been increasingly observed to play a key role in adverse events and impaired homeostasis in transfused recipients. In this view, proteomics has recently emerged as a functional tool to address the issue of protein composition of platelet releasates from buffy coat-derived platelet concentrates in the blood bank. Despite early encouraging studies on buffy coat-derived platelet concentrates, platelet releasates from apheresis platelets have not been hitherto addressed by means of extensive proteomics technologies. Indeed, apheresis platelets are resuspended in donors' plasma, which hampers detection of less abundant proteins, owing to the overwhelming abundance of albumin (and a handful of other proteins), and the dynamic range of protein concentrations of plasma proteins. In order to cope with these issues, we hereby performed an immuno-affinity column-based depletion of the 14 most abundant plasma proteins. Samples were thus assayed via GeLC-MS, a workflow that allowed us to cover an unprecedented portion of the platelet supernatant proteome, in comparison to previous transfusion medicine-oriented studies in the literature. Finally, we hereby address the issue of biological variability, by considering the donor gender as a key factor influencing the composition of apheresis platelet supernatants. As a result, we could conclude that platelet supernatants from male and female donors are not only different in the first place, but they also store differently. This conclusion has been so far only suggested by classic transfusion medicine studies, but has been hitherto unsupported by actual biochemistry/proteomics investigations. In our opinion, the main strengths of this study are related to the analytical workflow (immunodepletion and GeLC-MS) and proteome coverage, the translational validity of the results (from a transfusion medicine standpoint) and the biological conclusion about the intrinsic (and storage-dependent) gender-related differences of platelet supernatants.
Collapse
|
10
|
Burkhart JM, Gambaryan S, Watson SP, Jurk K, Walter U, Sickmann A, Heemskerk JWM, Zahedi RP. What can proteomics tell us about platelets? Circ Res 2014; 114:1204-19. [PMID: 24677239 DOI: 10.1161/circresaha.114.301598] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
More than 130 years ago, it was recognized that platelets are key mediators of hemostasis. Nowadays, it is established that platelets participate in additional physiological processes and contribute to the genesis and progression of cardiovascular diseases. Recent data indicate that the platelet proteome, defined as the complete set of expressed proteins, comprises >5000 proteins and is highly similar between different healthy individuals. Owing to their anucleate nature, platelets have limited protein synthesis. By implication, in patients experiencing platelet disorders, platelet (dys)function is almost completely attributable to alterations in protein expression and dynamic differences in post-translational modifications. Modern platelet proteomics approaches can reveal (1) quantitative changes in the abundance of thousands of proteins, (2) post-translational modifications, (3) protein-protein interactions, and (4) protein localization, while requiring only small blood donations in the range of a few milliliters. Consequently, platelet proteomics will represent an invaluable tool for characterizing the fundamental processes that affect platelet homeostasis and thus determine the roles of platelets in health and disease. In this article we provide a critical overview on the achievements, the current possibilities, and the future perspectives of platelet proteomics to study patients experiencing cardiovascular, inflammatory, and bleeding disorders.
Collapse
Affiliation(s)
- Julia M Burkhart
- From the Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (J.M.B., A.S., R.P.Z); Institut für Klinische Biochemie und Pathobiochemie, Universitätsklinikum Würzburg, Würzburg, Germany (S.G.); Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia (S.G.); Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.P.W.); Center for Thrombosis and Hemostasis, Universitätsklinikum der Johannes Gutenberg-Universität Mainz, Mainz, Germany (K.J., U.W.); Medizinisches Proteom Center, Ruhr Universität Bochum, Bochum, Germany (A.S.); Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom (A.S.); and Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands (J.W.M.H.)
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Prudent M, D’Alessandro A, Cazenave JP, Devine DV, Gachet C, Greinacher A, Lion N, Schubert P, Steil L, Thiele T, Tissot JD, Völker U, Zolla L. Proteome Changes in Platelets After Pathogen Inactivation—An Interlaboratory Consensus. Transfus Med Rev 2014; 28:72-83. [DOI: 10.1016/j.tmrv.2014.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022]
|
12
|
Menter DG, Tucker SC, Kopetz S, Sood AK, Crissman JD, Honn KV. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev 2014; 33:231-69. [PMID: 24696047 PMCID: PMC4186918 DOI: 10.1007/s10555-014-9498-0] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human platelets arise as subcellular fragments of megakaryocytes in bone marrow. The physiologic demand, presence of disease such as cancer, or drug effects can regulate the production circulating platelets. Platelet biology is essential to hemostasis, vascular integrity, angiogenesis, inflammation, innate immunity, wound healing, and cancer biology. The most critical biological platelet response is serving as "First Responders" during the wounding process. The exposure of extracellular matrix proteins and intracellular components occurs after wounding. Numerous platelet receptors recognize matrix proteins that trigger platelet activation, adhesion, aggregation, and stabilization. Once activated, platelets change shape and degranulate to release growth factors and bioactive lipids into the blood stream. This cyclic process recruits and aggregates platelets along with thrombogenesis. This process facilitates wound closure or can recognize circulating pathologic bodies. Cancer cell entry into the blood stream triggers platelet-mediated recognition and is amplified by cell surface receptors, cellular products, extracellular factors, and immune cells. In some cases, these interactions suppress immune recognition and elimination of cancer cells or promote arrest at the endothelium, or entrapment in the microvasculature, and survival. This supports survival and spread of cancer cells and the establishment of secondary lesions to serve as important targets for prevention and therapy.
Collapse
Affiliation(s)
- David G Menter
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | | | | | | | | | | |
Collapse
|
13
|
Platelets are efficient and protective depots for storage, distribution, and delivery of lysosomal enzyme in mice with Hurler syndrome. Proc Natl Acad Sci U S A 2014; 111:2680-5. [PMID: 24550296 DOI: 10.1073/pnas.1323155111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Use of megakaryocytes/platelets for transgene expression may take advantage of their rapid turnover and protective storage in platelets and reduce the risk of activating oncogenes in hematopoietic stem and progenitor cells (HSCs). Here, we show that human megakaryocytic cells could overexpress the lysosomal enzyme, α-l-iduronidase (IDUA), which is deficient in patients with mucopolysaccharidosis type I (MPS I). Upon megakaryocytic differentiation, the amount of released enzyme increased rapidly and steadily by 30-fold. Using a murine MPS I model, we demonstrated that megakaryocyte/platelets were capable of producing, packaging, and storing large amounts of IDUA with proper catalytic activity, lysosomal trafficking, and receptor-mediated uptake. IDUA can be released directly into extracellular space or within microparticles during megakaryocyte maturation or platelet activation, while retaining the capacity for cross-correction in patient's cells. Gene transfer into 1.7% of HSCs led to long-term normalization of plasma IDUA and preferential distribution of enzyme in liver and spleen with complete metabolic correction in MPS I mice. Detection of GFP (coexpressed with IDUA) in Kupffer cells and hepatocytes suggested liver delivery of platelet-derived IDUA possibly via the clearance pathway for senile platelets. These findings provide proof of concept that cells from megakaryocytic lineage and platelets are capable of generating and storing fully functional lysosomal enzymes and can also lead to efficient delivery of both the enzymes released into the circulation and those protected within platelets/microparticles. This study opens a door for use of the megakaryocytes/platelets as a depot for efficient production, delivery, and effective tissue distribution of lysosomal enzymes.
Collapse
|
14
|
|
15
|
Liumbruno GM, Franchini M. Proteomic analysis of venous thromboembolism: an update. Expert Rev Proteomics 2013; 10:179-88. [PMID: 23573784 DOI: 10.1586/epr.13.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Venous thromboembolism is a complex, multifactorial disorder, the pathogenesis of which typically involves a variety of inherited or acquired factors. The multifactorial etiology of this disease and the partial correlation between genotype and prothrombotic phenotype limit greatly the value of genetic analysis in assessing thrombotic risk. The integration of several new 'omics' techniques enables a multifaceted and holistic approach to the study of venous thrombotic processes and pave the way to the search and identification of novel blood biomarkers and/or effectors of thrombus formation that can also be the possible future target of new anticoagulant and thrombolytic therapies for more personalized medicine. This review provides a comprehensive overview of the latest candidate proteomic biomarkers of venous thrombosis and of the proteomics studies relevant to its pathophysiology, some of which seem to confirm the existence of a common physiopathological basis for venous thromboembolism and atherothrombosis.
Collapse
Affiliation(s)
- Giancarlo Maria Liumbruno
- UOC di Immunoematologia e Medicina Trasfusionale and UOC di Patologia Clinica, San Giovanni Calibita Fatebenefratelli Hospital, 00186 Rome, Italy.
| | | |
Collapse
|
16
|
Liddy KA, White MY, Cordwell SJ. Functional decorations: post-translational modifications and heart disease delineated by targeted proteomics. Genome Med 2013; 5:20. [PMID: 23445784 PMCID: PMC3706772 DOI: 10.1186/gm424] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The more than 300 currently identified post-translational modifications (PTMs) provides great scope for subtle or dramatic alteration of protein structure and function. Furthermore, the rapid and transient nature of many PTMs allows efficient signal transmission in response to internal and environmental stimuli. PTMs are predominantly added by enzymes, and the enzymes responsible (such as kinases) are thus attractive targets for therapeutic interventions. Modifications can be grouped according to their stability or transience (reversible versus irreversible): irreversible types (such as irreversible redox modifications or protein deamidation) are often associated with aging or tissue injury, whereas transient modifications are associated with signal propagation and regulation. This is particularly important in the setting of heart disease, which comprises a diverse range of acute (such as ischemia/reperfusion), chronic (such as heart failure, dilated cardiomyopathy) and genetic (such as hypertrophic cardiomyopathy) disease states, all of which have been associated with protein PTM. Recently the interplay between diverse PTMs has been suggested to also influence cellular function, with cooperation or competition for sites of modification possible. Here we discuss the utility of proteomics for examining PTMs in the context of the molecular mechanisms of heart disease.
Collapse
Affiliation(s)
- Kiersten A Liddy
- School of Molecular Bioscience, The University of Sydney, 2006 Sydney, Australia
| | - Melanie Y White
- School of Molecular Bioscience, The University of Sydney, 2006 Sydney, Australia ; Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006 Sydney, Australia
| | - Stuart J Cordwell
- School of Molecular Bioscience, The University of Sydney, 2006 Sydney, Australia ; Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006 Sydney, Australia
| |
Collapse
|
17
|
Zufferey A, Ibberson M, Reny JL, Xenarios I, Sanchez JC, Fontana P. Unraveling modulators of platelet reactivity in cardiovascular patients using omics strategies: Towards a network biology paradigm. TRANSLATIONAL PROTEOMICS 2013. [DOI: 10.1016/j.trprot.2013.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
18
|
|
19
|
A detailed proteomic analysis of rhodocytin-activated platelets reveals novel clues on the CLEC-2 signalosome: implications for CLEC-2 signaling regulation. Blood 2012; 120:e117-26. [DOI: 10.1182/blood-2012-09-456004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Abstract
C-type lectin-like receptor 2 (CLEC-2) is an essential platelet-activating receptor in hemostasis and thrombosis that is activated by the snake venom rhodocytin. We present here a differential proteomic analysis of basal and rhodocytin-activated platelets with the aim of providing novel clues on CLEC-2 signaling regulation. Proteome analysis was based on 2D-DIGE, phosphotyrosine immunoprecipitations followed by 1D SDS-PAGE and mass spectrometry. Protein-protein interactions were studied by coimmunoprecipitations and a systems biology approach. Overall, we identified 132 proteins differentially regulated after CLEC-2 platelet activation, including most of the major players reported so far in the signaling cascade. In addition, we identified various proteins not previously known to participate in CLEC-2 signaling, such as the adapters Dok-2 and ADAP, tyrosine kinase Fer, and tyrosine phosphatase SHIP-1. We also report an increased association between Dok-2 and SHIP-1 in rhodocytin-stimulated platelets, which might negatively regulate CLEC-2 signaling. Moreover, we also present a comparative analysis of proteomic data for CLEC-2 and glycoprotein VI signaling. We think that our data provide thrombosis-relevant information on CLEC-2 signaling regulation, contributing to a better understanding of this important signaling cascade.
Collapse
|
20
|
Response to "Platelets proteomics in transfusion medicine: a reality with challenging but promising future". BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2012; 11:316. [PMID: 23245716 DOI: 10.2450/2012.0175-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/08/2012] [Indexed: 01/21/2023]
|
21
|
Platelet proteomics in transfusion medicine: a reality with a challenging but promising future. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2012; 10 Suppl 2:s113-4. [PMID: 22890261 DOI: 10.2450/2012.015s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Rebulla P. From pH to MALDI-TOF: hundreds of spotted opportunities? J Proteomics 2012; 76 Spec No.:270-4. [PMID: 22889710 DOI: 10.1016/j.jprot.2012.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 11/16/2022]
Abstract
Current protocols for quality assurance of platelet concentrates used in transfusion therapy include evaluation of platelet count and pH, in vitro measurements of platelet lysis, membrane activation and microparticle release and assays of platelet ability to respond to aggregation stimuli and to hypotonic shock. Unfortunately, these assays show limited correlation to post-transfusion platelet survival and recovery in the recipient. This requires validation of platelet collection and storage systems with expensive and time consuming autologous transfusion studies in healthy volunteers with radiolabeled platelets. Furthermore, platelets from some donors show increased lesion during storage for reasons that are incompletely understood. This editorial discusses recent strides in proteomic technology which open interesting perspectives for improving current procedures for quality assurance of platelet concentrates and increasing the safety and effectiveness of platelet transfusion in medical and surgical conditions. This article is part of a Special Issue entitled: Integrated omics.
Collapse
Affiliation(s)
- Paolo Rebulla
- Center of Transfusion Medicine, Cellular Therapy and Cryobiology, Department of Regenerative Medicine, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy.
| |
Collapse
|
23
|
Optimization of platelet concentrate quality: application of proteomic technologies to donor management. J Proteomics 2012; 76 Spec No.:329-36. [PMID: 22771519 DOI: 10.1016/j.jprot.2012.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/22/2012] [Accepted: 06/26/2012] [Indexed: 01/14/2023]
Abstract
Quality management of blood products is essential for blood banking. It is influenced by both processing and donor characteristics and assured by monitoring routine in vitro parameters to defined product specifications. However, these measures correlate poorly with the in vivo behavior of transfused platelets and cannot be used to select optimal donors. Since radiolabeled platelet recovery and survival studies are expensive and time consuming, there is an ongoing search for simpler measures that predict platelet transfusion outcomes. We performed a pilot study using semi-qualitative proteomics to assess changes in the platelet protein profile of donors with either acceptable or unacceptable in vivo radiolabeled autologous platelet recovery and survival measurements. Proteins changing during a 9-day storage period included cytoskeletal elements talin, vinculin and moesin as well as signal transduction proteins 14-3-3, RhoGDI and Rap1. Two of nine donations exhibited a decrease in these proteins and poor in vivo platelet recovery and survival whereas the remaining donors showed acceptable platelet recovery and survival and expected protein profiles. Analyses revealed a significant correlation between protein levels of Rap1 and RhoGDI during storage and platelet recovery and survival. This study provides for the first time preliminary data showing evidence of the utility of protein profiling to predict platelet transfusion quality. This article is part of a Special Issue entitled: Integrated omics.
Collapse
|