1
|
Chapman J, Paukner M, Leser M, Teng KW, Koide S, Holder M, Armache KJ, Becker C, Ueberheide B, Brenowitz M. Systematic Fe(II)-EDTA Method of Dose-Dependent Hydroxyl Radical Generation for Protein Oxidative Footprinting. Anal Chem 2023; 95:18316-18325. [PMID: 38049117 PMCID: PMC10734636 DOI: 10.1021/acs.analchem.3c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
Correlating the structure and dynamics of proteins with biological function is critical to understanding normal and dysfunctional cellular mechanisms. We describe a quantitative method of hydroxyl radical generation via Fe(II)-ethylenediaminetetraacetic acid (EDTA)-catalyzed Fenton chemistry that provides ready access to protein oxidative footprinting using equipment commonly found in research and process control laboratories. Robust and reproducible dose-dependent oxidation of protein samples is observed and quantitated by mass spectrometry with as fine a single residue resolution. An oxidation analysis of lysozyme provides a readily accessible benchmark for our method. The efficacy of our oxidation method is demonstrated by mapping the interface of a RAS-monobody complex, the surface of the NIST mAb, and the interface between PRC2 complex components. These studies are executed using standard laboratory tools and a few pennies of reagents; the mass spectrometry analysis can be streamlined to map the protein structure with single amino acid residue resolution.
Collapse
Affiliation(s)
- Jessica
R. Chapman
- The
Proteomics Laboratory, New York University
(NYU) School of Medicine, New York, New York 10013, United States
| | - Max Paukner
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Micheal Leser
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Kai Wen Teng
- Perlmutter
Cancer Center, NYU Langone Health, New York, New York 10016, United States
| | - Shohei Koide
- Perlmutter
Cancer Center, NYU Langone Health, New York, New York 10016, United States
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
| | - Marlene Holder
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
- Skirball
Institute of Biomolecular Medicine, NYU
School of Medicine, New York, New York 10013, United States
| | - Karim-Jean Armache
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
- Skirball
Institute of Biomolecular Medicine, NYU
School of Medicine, New York, New York 10013, United States
| | - Chris Becker
- Protein
Metrics Inc., Cupertino, California 95014, United States
| | - Beatrix Ueberheide
- The
Proteomics Laboratory, New York University
(NYU) School of Medicine, New York, New York 10013, United States
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
| | - Michael Brenowitz
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department
of Molecular Pharmacology, Albert Einstein
College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
2
|
Zhu Y, Serra A, Guo T, Park JE, Zhong Q, Sze SK. Application of Nanosecond Laser Photolysis Protein Footprinting to Study EGFR Activation by EGF in Cells. J Proteome Res 2017; 16:2282-2293. [DOI: 10.1021/acs.jproteome.7b00154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yi Zhu
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore
| | - Aida Serra
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore
| | - Tiannan Guo
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore
| | - Jung Eun Park
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore
| | - Qing Zhong
- Department
of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Siu Kwan Sze
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore
| |
Collapse
|
3
|
McClintock CS, Parks JM, Bern M, Ghattyvenkatakrishna PK, Hettich RL. Comparative informatics analysis to evaluate site-specific protein oxidation in multidimensional LC-MS/MS data. J Proteome Res 2013; 12:3307-16. [PMID: 23827042 DOI: 10.1021/pr400141p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Redox proteomics has yielded molecular insight into diseases of protein dysfunction attributable to oxidative stress, underscoring the need for robust detection of protein oxidation products. Additionally, oxidative protein surface mapping techniques utilize hydroxyl radicals to gain structural insight about solvent exposure. Interpretation of tandem mass spectral data is a critical challenge for such investigations, because reactive oxygen species target a wide breadth of amino acids. Additionally, oxidized peptides may be generated in a wide range of abundances since the reactivity of hydroxyl radicals with different amino acids spans 3 orders of magnitude. Taken together, these attributes of oxidative footprinting pose both experimental and computational challenges to detecting oxidized peptides that are naturally less abundant than their unoxidized counterparts. In this study, model proteins were oxidized electrochemically and analyzed at both the intact protein and peptide levels. A multidimensional chromatographic strategy was utilized to expand the dynamic range of oxidized peptide measurements. Peptide mass spectral data were searched by the "hybrid" software packages Inspect and Byonic, which incorporate de novo elements of spectral interpretation into a database search. This dynamic search capacity accommodates the challenge of searching for more than 40 oxidative mass shifts that can occur in a staggering variety of possible combinatorial occurrences. A prevailing set of oxidized residues was identified with this comparative approach, and evaluation of these sites was informed by solvent accessible surface area gleaned through molecular dynamics simulations. Along with increased levels of oxidation around highly reactive "hotspot" sites as expected, the enhanced sensitivity of these measurements uncovered a surprising level of oxidation on less reactive residues.
Collapse
Affiliation(s)
- Carlee S McClintock
- Graduate School of Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory, 1060 Commerce Park, Oak Ridge, Tennessee 37830, USA
| | | | | | | | | |
Collapse
|
4
|
Bendz M, Skwark M, Nilsson D, Granholm V, Cristobal S, Käll L, Elofsson A. Membrane protein shaving with thermolysin can be used to evaluate topology predictors. Proteomics 2013; 13:1467-80. [DOI: 10.1002/pmic.201200517] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/23/2013] [Accepted: 02/25/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Bendz
- Department of Biochemistry and Biophysics; Science for Life Laboratory, Center for Biomembrane Research, Stockholm University; Stockholm Sweden
| | - Marcin Skwark
- Department of Biochemistry and Biophysics; Science for Life Laboratory, Center for Biomembrane Research, Stockholm University; Stockholm Sweden
| | - Daniel Nilsson
- Department of Biochemistry and Biophysics; Science for Life Laboratory, Center for Biomembrane Research, Stockholm University; Stockholm Sweden
| | - Viktor Granholm
- Department of Biochemistry and Biophysics; Science for Life Laboratory, Center for Biomembrane Research, Stockholm University; Stockholm Sweden
| | - Susana Cristobal
- Department of Clinical and Experimental Medicine, Cell Biology; Faculty of Health Science, Linköping University; Linköping Sweden
- IKERBASQUE, Basque Foundation for Science; Department of Physiology, Basque Country Medical School; Bilbao Spain
| | - Lukas Käll
- Science for Life Laboratory, School of Biotechnology; Royal Institute of Technology (KTH); Solna Sweden
| | - Arne Elofsson
- Department of Biochemistry and Biophysics; Science for Life Laboratory, Center for Biomembrane Research, Stockholm University; Stockholm Sweden
| |
Collapse
|