1
|
de Farias JO, da Costa Sousa MG, Martins DCM, de Oliveira MA, Takahashi I, de Sousa LB, da Silva IGM, Corrêa JR, Silva Carvalho AÉ, Saldanha-Araújo F, Rezende TMB. Senescence on Dental Pulp Cells: Effects on Morphology, Migration, Proliferation, and Immune Response. J Endod 2024; 50:362-369. [PMID: 38211820 DOI: 10.1016/j.joen.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION Evidence indicates that senescence can affect essential dental pulp functions, such as defense capacity and repair, consequently affecting the successes of conservative endodontic treatments. This study aims to evaluate the effects of senescence on the morphology, migration, proliferation, and immune response of human dental pulp cells. METHODS Cells were treated with doxorubicin to induce senescence, confirmed by β-galactosidase staining. Morphological changes, cellular proliferation, and migration were evaluated by scanning electron microscopy, trypan blue cells, and the scratch method, respectively. Modifications in the immune response were evaluated by measuring the genes for pro-inflammatory cytokines tumor necrosis factor alpha and interleukin (IL)-6 and anti-inflammatory cytokines transforming growth factor beta 1 and IL-10 using the real time polymerase chain reaction assay. RESULTS An increase in cell size and a decrease in the number of extensions were observed in senescent cells. A reduction in the proliferative and migratory capacity was also found in senescent cells. In addition, there was an increase in the gene expression of inflammatory cytokines tumor necrosis factor alpha and IL-6 and a decrease in the gene expression of IL-10 and transforming growth factor beta-1, suggesting an exacerbated inflammatory situation associated with immunosuppression. CONCLUSIONS Cellular senescence is possibly a condition that affects prognoses of conservative endodontic treatments, as it affects primordial cellular functions related to this treatment.
Collapse
Affiliation(s)
- Jade Ormondes de Farias
- Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Brasília, Brazil
| | - Maurício Gonçalves da Costa Sousa
- Division of Biomaterials and Biomechanics, Department of Restorative, Dentistry, School of Dentistry, Oregon Health & Science University, Portland Oregon; Knigth Cancer Precision Biofabrication Hub, Knigth Cancer Institute, Oregon, Health and Science University, Portland, Oregon; Cancer Early Detection Advanced Research Center, Oregon Health Science, University, Portland, Oregon
| | - Danilo César Mota Martins
- Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Brasília, Brazil
| | - Mayara Alves de Oliveira
- Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Brasília, Brazil
| | - Isadora Takahashi
- Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Brasília, Brazil
| | - Larissa Barbosa de Sousa
- Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - José Raimundo Corrêa
- Laboratório de Microscopia e Microanálise, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Amandda Évelin Silva Carvalho
- Laboratório de Hematologia e Células-tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
| | - Felipe Saldanha-Araújo
- Laboratório de Hematologia e Células-tronco, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
| | - Taia Maria Berto Rezende
- Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Brasília, Brazil; Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica, de Brasília, Brasília, Brazil; Departamento de Odontologia, Faculdade de Ciências de Saúde, Universidade, Brasília, Brazil; Pós-graduação em Odontologia, Faculdade de Ciências de Saúde, Universidade de Brasília, Brasília, Brazil.
| |
Collapse
|
2
|
Qian W, Schmidt R, Turner JA, Bare SP, Lappe JM, Recker RR, Akhter MP. A pilot study on the nanoscale properties of bone tissue near lacunae in fracturing women. Bone Rep 2022; 17:101604. [PMID: 35874169 PMCID: PMC9304727 DOI: 10.1016/j.bonr.2022.101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
The goal of this study is to investigate the causes of osteoporosis-related skeletal fragility in postmenopausal women. We hypothesize that bone fragility in these individuals is largely due to mineral, and/or intrinsic material properties in the osteocyte lacunar/peri-lacunar regions of bone tissue. Innovative measurements with nanoscale resolution, including scanning electron microscope (SEM), an atomic force microscope that is integrated with infrared spectroscopy (AFM-IR), and nanoindentation, were used to characterize osteocyte lacunar and peri-lacunar properties in bone biopsies from fracturing (Cases) and matched (Age, BMD), non-fracturing (Controls) postmenopausal healthy women. In the peri-lacunar space, the nanoindentation results show that the modulus and hardness of the Controls are lower than the Cases. The AFM-IR results conclusively show that the mineral matrix, maturity (peak) (except in outer/far regions in Controls) were greater in Controls than in Cases. Furthermore, these results indicate that while mineral-to-matrix area ratio tend to be greater, the mineral maturity and crystallinity peak ratio "near" lacunae is greater than at regions "far" or more distance from lacunae in the Controls only. Due to the heterogeneity of bone structure, additional measurements are needed to provide more convincing evidence of altered lacunar characteristics and changes in the peri-lacunar bone as mechanisms related to postmenopausal women and fragility. Such findings would motivate new osteocyte-targeted treatments to reduce fragility fracture risks in these groups.
Collapse
Affiliation(s)
- Wen Qian
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, United States of America
| | - Roman Schmidt
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, United States of America
| | - Joseph A. Turner
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, United States of America
| | - Sue P. Bare
- Osteoporosis Research Center, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Joan M. Lappe
- Osteoporosis Research Center, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Robert R. Recker
- Osteoporosis Research Center, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Mohammed P. Akhter
- Osteoporosis Research Center, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| |
Collapse
|
3
|
Evans LAE, Pitsillides AA. Structural clues to articular calcified cartilage function: A descriptive review of this crucial interface tissue. J Anat 2022; 241:875-895. [PMID: 35866709 PMCID: PMC9482704 DOI: 10.1111/joa.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
Articular calcified cartilage (ACC) has been dismissed, by some, as a remnant of endochondral ossification without functional relevance to joint articulation or weight-bearing. Recent research indicates that morphologic and metabolic ACC features may be important, reflecting knee joint osteoarthritis (OA) predisposition. ACC is less investigated than neighbouring joint tissues, with its component chondrocytes and mineralised matrix often being either ignored or integrated into analyses of hyaline articular cartilage and subchondral bone tissue respectively. Anatomical variation in ACC is recognised between species, individuals and age groups, but the selective pressures underlying this variation are unknown. Consequently, optimal ACC biomechanical features are also unknown as are any potential locomotory roles. This review collates descriptions of ACC anatomy and biology in health and disease, with a view to revealing its structure/function relationship and highlighting potential future research avenues. Mouse models of healthy and OA joint ageing have shown disparities in ACC load-induced deformations at the knee joint. This raises the hypothesis that ACC response to locomotor forces over time may influence, or even underlie, the bony and hyaline cartilage symptoms characteristic of OA. To effectively investigate the ACC, greater resolution of joint imaging and merging of hierarchical scale data will be required. An appreciation of OA as a 'whole joint disease' is expanding, as is the possibility that the ACC may be a key player in healthy ageing and in the transition to OA joint pathology.
Collapse
Affiliation(s)
- Lucinda A. E. Evans
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of LondonLondonUK
| | - Andrew A. Pitsillides
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of LondonLondonUK
| |
Collapse
|
4
|
Quality control methods in musculoskeletal tissue engineering: from imaging to biosensors. Bone Res 2021; 9:46. [PMID: 34707086 PMCID: PMC8551153 DOI: 10.1038/s41413-021-00167-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/23/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering is rapidly progressing toward clinical application. In the musculoskeletal field, there has been an increasing necessity for bone and cartilage replacement. Despite the promising translational potential of tissue engineering approaches, careful attention should be given to the quality of developed constructs to increase the real applicability to patients. After a general introduction to musculoskeletal tissue engineering, this narrative review aims to offer an overview of methods, starting from classical techniques, such as gene expression analysis and histology, to less common methods, such as Raman spectroscopy, microcomputed tomography, and biosensors, that can be employed to assess the quality of constructs in terms of viability, morphology, or matrix deposition. A particular emphasis is given to standards and good practices (GXP), which can be applicable in different sectors. Moreover, a classification of the methods into destructive, noninvasive, or conservative based on the possible further development of a preimplant quality monitoring system is proposed. Biosensors in musculoskeletal tissue engineering have not yet been used but have been proposed as a novel technology that can be exploited with numerous advantages, including minimal invasiveness, making them suitable for the development of preimplant quality control systems.
Collapse
|
5
|
Mürer FK, Chattopadhyay B, Madathiparambil AS, Tekseth KR, Di Michiel M, Liebi M, Lilledahl MB, Olstad K, Breiby DW. Quantifying the hydroxyapatite orientation near the ossification front in a piglet femoral condyle using X-ray diffraction tensor tomography. Sci Rep 2021; 11:2144. [PMID: 33495539 PMCID: PMC7835348 DOI: 10.1038/s41598-020-80615-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
While a detailed knowledge of the hierarchical structure and morphology of the extracellular matrix is considered crucial for understanding the physiological and mechanical properties of bone and cartilage, the orientation of collagen fibres and carbonated hydroxyapatite (HA) crystallites remains a debated topic. Conventional microscopy techniques for orientational imaging require destructive sample sectioning, which both precludes further studies of the intact sample and potentially changes the microstructure. In this work, we use X-ray diffraction tensor tomography to image non-destructively in 3D the HA orientation in a medial femoral condyle of a piglet. By exploiting the anisotropic HA diffraction signal, 3D maps showing systematic local variations of the HA crystallite orientation in the growing subchondral bone and in the adjacent mineralized growth cartilage are obtained. Orientation maps of HA crystallites over a large field of view (~ 3 × 3 × 3 mm3) close to the ossification (bone-growth) front are compared with high-resolution X-ray propagation phase-contrast computed tomography images. The HA crystallites are found to predominantly orient with their crystallite c-axis directed towards the ossification front. Distinct patterns of HA preferred orientation are found in the vicinity of cartilage canals protruding from the subchondral bone. The demonstrated ability of retrieving 3D orientation maps of bone-cartilage structures is expected to give a better understanding of the physiological properties of bones, including their propensity for bone-cartilage diseases.
Collapse
Affiliation(s)
- Fredrik K. Mürer
- grid.5947.f0000 0001 1516 2393PoreLab, Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Basab Chattopadhyay
- grid.5947.f0000 0001 1516 2393PoreLab, Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Aldritt Scaria Madathiparambil
- grid.5947.f0000 0001 1516 2393PoreLab, Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Kim Robert Tekseth
- grid.5947.f0000 0001 1516 2393PoreLab, Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Marco Di Michiel
- grid.5398.70000 0004 0641 6373ESRF-The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Marianne Liebi
- grid.5371.00000 0001 0775 6028Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Magnus B. Lilledahl
- grid.5947.f0000 0001 1516 2393Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Kristin Olstad
- grid.19477.3c0000 0004 0607 975XFaculty of Veterinary Medicine, Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences (NMBU), Equine Section, Sentrum, P. O. Box 369, 0102 Oslo, Norway
| | - Dag W. Breiby
- grid.5947.f0000 0001 1516 2393PoreLab, Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway ,grid.463530.70000 0004 7417 509XDepartment of Microsystems, University of South-Eastern Norway (USN), Campus Vestfold, 3184 Borre, Norway
| |
Collapse
|
6
|
Peyroteo MMA, Belinha J, Dinis LMJS, Natal Jorge RM. A new biological bone remodeling in silico model combined with advanced discretization methods. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3196. [PMID: 30835964 DOI: 10.1002/cnm.3196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Bone remodeling remains a highly researched topic investigated by many strands of science. The main purpose of this work is formulating a new computational framework for biological simulation, extending the version of the bone remodeling model previously proposed by Komarova. Thus, considering only the biological aspect of the remodeling process, the action of osteoclasts and osteoblasts is taken into account as well as its impact on bone mass. It is conducted a spatiotemporal analysis of a remodeling cycle obtaining a dynamic behavior of bone cells very similar to the biological process already described in the literature. The numerical example used is based on bone images obtained with scanning electron microscopy. During simulation, it is possible to observe the variation of bone's architecture through isomaps. These maps are obtained through the combination of biological bone remodeling models with three distinct numerical techniques-finite element method (FEM), radial point interpolation method (RPIM), and natural neighbor radial point interpolation method (NNRPIM). A study combining these numerical techniques allows to compare their performance. Ultimately, this work supports the inclusion of meshless methods due to their smoother results and its easiness to be combined with medical images from CT scans and MRI.
Collapse
Affiliation(s)
- Madalena M A Peyroteo
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Rua Dr. Roberto Frias, 400, 4200-465, Porto, Portugal
- Mechanical Engineering Department, Faculty of Engineering of the University of Porto, FEUP, Rua Dr. Roberto Frias, S/N, 4200-465, Porto, Portugal
| | - Jorge Belinha
- Mechanical Engineering Department, School of Engineering, Polytechnic of Porto (ISEP), Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - Lucia M J S Dinis
- Mechanical Engineering Department, Faculty of Engineering of the University of Porto, FEUP, Rua Dr. Roberto Frias, S/N, 4200-465, Porto, Portugal
| | - Renato M Natal Jorge
- Mechanical Engineering Department, Faculty of Engineering of the University of Porto, FEUP, Rua Dr. Roberto Frias, S/N, 4200-465, Porto, Portugal
| |
Collapse
|
7
|
Shah FA, Ruscsák K, Palmquist A. 50 years of scanning electron microscopy of bone-a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone Res 2019; 7:15. [PMID: 31123620 PMCID: PMC6531483 DOI: 10.1038/s41413-019-0053-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair. The scanning electron microscope (SEM) is among the most frequently used instruments for examining bone. It offers the key advantage of very high spatial resolution coupled with a large depth of field and wide field of view. Interactions between incident electrons and atoms on the sample surface generate backscattered electrons, secondary electrons, and various other signals including X-rays that relay compositional and topographical information. Through selective removal or preservation of specific tissue components (organic, inorganic, cellular, vascular), their individual contribution(s) to the overall functional competence can be elucidated. With few restrictions on sample geometry and a variety of applicable sample-processing routes, a given sample may be conveniently adapted for multiple analytical methods. While a conventional SEM operates at high vacuum conditions that demand clean, dry, and electrically conductive samples, non-conductive materials (e.g., bone) can be imaged without significant modification from the natural state using an environmental scanning electron microscope. This review highlights important insights gained into bone microstructure and pathophysiology, bone response to implanted biomaterials, elemental analysis, SEM in paleoarchaeology, 3D imaging using focused ion beam techniques, correlative microscopy and in situ experiments. The capacity to image seamlessly across multiple length scales within the meso-micro-nano-continuum, the SEM lends itself to many unique and diverse applications, which attest to the versatility and user-friendly nature of this instrument for studying bone. Significant technological developments are anticipated for analysing bone using the SEM.
Collapse
Affiliation(s)
- Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Krisztina Ruscsák
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Beresheim AC, Pfeiffer SK, Grynpas MD, Alblas A. Use of backscattered scanning electron microscopy to quantify the bone tissues of mid‐thoracic human ribs. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:262-278. [DOI: 10.1002/ajpa.23716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Amy C. Beresheim
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
| | - Susan K. Pfeiffer
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
- Department of ArchaeologyUniversity of Cape Town Rondebosch Cape Town South Africa
- Department of Anthropology and Center for Advanced Study of Human PaleobiologyGeorge Washington University Washington, D.C
| | - Marc D. Grynpas
- Department of Laboratory Medicine and Pathobiology and Institute for Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai Hospital Toronto Ontario Canada
| | - Amanda Alblas
- Division of Anatomy and Histology, Department of Biomedical SciencesStellenbosch University Cape Town South Africa
| |
Collapse
|
9
|
Boyde A, Staines KA, Javaheri B, Millan JL, Pitsillides AA, Farquharson C. A distinctive patchy osteomalacia characterises Phospho1-deficient mice. J Anat 2018; 231:298-308. [PMID: 28737011 DOI: 10.1111/joa.12628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2017] [Indexed: 11/27/2022] Open
Abstract
The phosphatase PHOSPHO1 is involved in the initiation of biomineralisation. Bones in Phospho1 knockout (KO) mice show histological osteomalacia with frequent bowing of long bones and spontaneous fractures: they contain less mineral, with smaller mineral crystals. However, the consequences of Phospho1 ablation on the microscale structure of bone are not yet fully elucidated. Tibias and femurs obtained from wild-type and Phospho1 null (KO) mice (25-32 weeks old) were embedded in PMMA, cut and polished to produce near longitudinal sections. Block surfaces were studied using 20 kV backscattered-electron (BSE) imaging, and again after iodine staining to reveal non-mineralised matrix and cellular components. For 3D characterisation, we used X-ray micro-tomography. Bones opened with carbide milling tools to expose endosteal surfaces were macerated using an alkaline bacterial pronase enzyme detergent, 5% hydrogen peroxide and 7% sodium hypochlorite solutions to produce 3D surfaces for study with 3D BSE scanning electron microscopy (SEM). Extensive regions of both compact cortical and trabecular bone matrix in Phospho1 KO mice contained no significant mineral and/or showed arrested mineralisation fronts, characterised by a failure in the fusion of the calcospherite-like, separately mineralising, individual micro-volumes within bone. Osteoclastic resorption of the uncalcified matrix in Phospho1 KO mice was attenuated compared with surrounding normally mineralised bone. The extent and position of this aberrant biomineralisation varied considerably between animals, contralateral limbs and anatomical sites. The most frequent manifestation lay, however, in the nearly complete failure of mineralisation in the bone surrounding the numerous transverse blood vessel canals in the cortices. In conclusion, SEM disclosed defective mineralising fronts and extensive patchy osteomalacia, which has previously not been recognised. These data further confirm the role of this phosphatase in physiological skeletal mineralisation.
Collapse
Affiliation(s)
- Alan Boyde
- Dental Physical Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Behzad Javaheri
- Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Jose Luis Millan
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Colin Farquharson
- Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, UK
| |
Collapse
|
10
|
Georgiadis M, Müller R, Schneider P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J R Soc Interface 2017; 13:rsif.2016.0088. [PMID: 27335222 DOI: 10.1098/rsif.2016.0088] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils.
Collapse
Affiliation(s)
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
11
|
Chan WCW, Tsang KY, Cheng YW, Ng VCW, Chik H, Tan ZJ, Boot-Handford R, Boyde A, Cheung KMC, Cheah KSE, Chan D. Activating the unfolded protein response in osteocytes causes hyperostosis consistent with craniodiaphyseal dysplasia. Hum Mol Genet 2017; 26:4572-4587. [DOI: 10.1093/hmg/ddx339] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/24/2017] [Indexed: 01/07/2023] Open
|
12
|
Jalili-Firoozinezhad S, Martin I, Scherberich A. Bimodal morphological analyses of native and engineered tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:543-550. [DOI: 10.1016/j.msec.2017.03.140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/23/2022]
|
13
|
Remoli C, Michienzi S, Sacchetti B, Consiglio AD, Cersosimo S, Spica E, Robey PG, Holmbeck K, Cumano A, Boyde A, Davis G, Saggio I, Riminucci M, Bianco P. Osteoblast-specific expression of the fibrous dysplasia (FD)-causing mutation Gsα(R201C) produces a high bone mass phenotype but does not reproduce FD in the mouse. J Bone Miner Res 2015; 30:1030-43. [PMID: 25487351 PMCID: PMC5526456 DOI: 10.1002/jbmr.2425] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 12/20/2022]
Abstract
We recently reported the generation and initial characterization of the first direct model of human fibrous dysplasia (FD; OMIM #174800), obtained through the constitutive systemic expression of one of the disease-causing mutations, Gsα(R201C) , in the mouse. To define the specific pathogenetic role(s) of individual cell types within the stromal/osteogenic system in FD, we generated mice expressing Gsα(R201C) selectively in mature osteoblasts using the 2.3kb Col1a1 promoter. We show here that this results in a striking high bone mass phenotype but not in a mimicry of human FD. The high bone mass phenotype involves specifically a deforming excess of cortical bone and prolonged and ectopic cortical bone remodeling. Expression of genes characteristic of late stages of bone cell differentiation/maturation is profoundly altered as a result of expression of Gsα(R201C) in osteoblasts, and expression of the Wnt inhibitor Sost is reduced. Although high bone mass is, in fact, a feature of some types/stages of FD lesions in humans, it is marrow fibrosis, localized loss of adipocytes and hematopoietic tissue, osteomalacia, and osteolytic changes that together represent the characteristic pathological profile of FD, as well as the sources of specific morbidity. None of these features are reproduced in mice with osteoblast-specific expression of Gsα(R201C) . We further show that hematopoietic progenitor/stem cells, as well as more mature cell compartments, and adipocyte development are normal in these mice. These data demonstrate that effects of Gsα mutations underpinning FD-defining tissue changes and morbidity do not reflect the effects of the mutations on osteoblasts proper.
Collapse
Affiliation(s)
- Cristina Remoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefano Michienzi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Stefania Cersosimo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Emanuela Spica
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Pamela G Robey
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Kenn Holmbeck
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Ana Cumano
- Lymphopoiesis Unit, INSERM, Pasteur Institute, Paris, France
| | - Alan Boyde
- Dental Physical Sciences, Queen Mary University of London, London, UK
| | - Graham Davis
- Dental Physical Sciences, Queen Mary University of London, London, UK
| | - Isabella Saggio
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, and IBPM CNR, Rome, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Bianco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
Pritchard JM, Papaioannou A, Tomowich C, Giangregorio LM, Atkinson SA, Beattie KA, Adachi JD, DeBeer J, Winemaker M, Avram V, Schwarcz HP. Bone mineralization is elevated and less heterogeneous in adults with type 2 diabetes and osteoarthritis compared to controls with osteoarthritis alone. Bone 2013; 54:76-82. [PMID: 23356988 PMCID: PMC5096932 DOI: 10.1016/j.bone.2013.01.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 01/22/2023]
Abstract
PURPOSE The purpose of this study was to determine whether trabecular bone mineralization differed in adults with type 2 diabetes compared to adults without type 2 diabetes. METHODS Proximal femur specimens were obtained following a total hip replacement procedure from men and women ≥65 years of age with and without type 2 diabetes. A scanning electron microscope was used for quantitative backscattered electron imaging (qBEI) analysis of trabecular bone samples from the femoral neck. Gray scale images (pixel size=5.6 μm(2)) were uploaded to ImageJ software and gray level (GL) values were converted to calcium concentrations (weight [wt] % calcium [Ca]) using data obtained with energy dispersive X-ray spectrometry. The following bone mineralization density distribution (BMDD) outcomes were collected: the weighted mean bone calcium concentration (CaMEAN), the most frequently occurring bone calcium concentration (CaPEAK) and mineralization heterogeneity (CaWIDTH). Differences between groups were assessed using the Student's t-test for normally distributed data and Mann-Whitney U-test for non-normally distributed data. An alpha value of <0.05 was considered significant. RESULTS Thirty-five Caucasian participants were recruited (mean [standard deviation, SD] age, 75.5 [6.5]years): 14 adults with type 2 diabetes (years since type 2 diabetes diagnosis, 13.5 [7.4]years) and 21 adults without type 2 diabetes. In the adults with type 2 diabetes, bone CaMEAN was 4.9% greater (20.36 [0.98]wt.% Ca versus 19.40 [1.07]wt.% Ca, p=0.015) and CaWIDTH was 9.4% lower (median [interquartile range] 3.55 [2.99-4.12]wt.% Ca versus 3.95 [0.71]wt.% Ca, p<0.001) compared to controls. There was no between-group difference in CaPEAK (21.12 [0.97]wt.% Ca for type 2 diabetes versus 20.44 [1.30]wt.% Ca for controls, p=0.121). CONCLUSION The combination of elevated mean calcium concentration in bone and lower mineralization heterogeneity in adults with type 2 diabetes may have deleterious effects on the biomechanical properties of bone. These microscopic alterations in bone mineralization, which may be mediated by suppressed bone remodeling, further elucidate higher fracture risk in adults with type 2 diabetes.
Collapse
Affiliation(s)
- J M Pritchard
- Faculty of Health Sciences, McMaster University, 1280 Main St West, Hamilton ON, Canada L8S 4K1.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Carter Y, Thomas CDL, Clement JG, Peele AG, Hannah K, Cooper DML. Variation in osteocyte lacunar morphology and density in the human femur--a synchrotron radiation micro-CT study. Bone 2013; 52:126-32. [PMID: 22995461 DOI: 10.1016/j.bone.2012.09.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 11/29/2022]
Abstract
In recent years there has been growing interest in the spatial properties of osteocytes (including density and morphology) and how these potentially relate to adaptation, disease and aging. This interest has, in part, arisen from the availability of increasingly high-resolution 3D imaging modalities such as synchrotron radiation (SR) micro-CT. As resolution increases, field of view generally decreases. Thus, while increasingly detailed spatial information is obtained, it is unclear how representative this information is of the skeleton or even the isolated bone. The purpose of this research was to describe the variation in osteocyte lacunar density, morphology and orientation within the femur from a healthy young male human. Multiple anterior, posterior, medial and lateral blocks (2 mm × 2 mm) were prepared from the proximal femoral shaft and SR micro-CT imaged at the Advanced Photon Source. Average lacunar densities (± standard deviation) from the anterior, posterior, medial and lateral regions were 27,169 ± 1935, 26,3643 ± 1262, 37,521 ± 6416 and 33,972 ± 2513 lacunae per mm(3) of bone tissue, respectively. These values were significantly different between the medial and both the anterior and posterior regions (p<0.05). The density of the combined anterior and posterior regions was also significantly lower (p=0.001) than the density of the combined medial and lateral regions. Although no difference was found in predominant orientation, shape differences were found; with the combined anterior and posterior regions having more elongated (p=0.004) and flattened (p=0.045) lacunae, than those of the medial and lateral regions. This study reveals variation in osteocyte lacunar density and morphology within the cross-section of a single bone and that this variation can be considerable (up to 30% difference in density between regions). The underlying functional significance of the observed variation in lacunar density likely relates to localized variations in loading conditions as the pattern corresponds well with mechanical axes. Lower density and more elongate shapes being associated with the antero-posterior oriented neutral axis. Our findings demonstrate that the functional and pathological interpretations that are increasingly being drawn from high resolution imaging of osteocyte lacunae need to be better situated within the broader context of normal variation, including that which occurs even within a single skeletal element.
Collapse
Affiliation(s)
- Yasmin Carter
- Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, Canada.
| | | | | | | | | | | |
Collapse
|