1
|
Smith MM, Hayes AJ, Melrose J. Pentosan Polysulphate (PPS), a Semi-Synthetic Heparinoid DMOAD With Roles in Intervertebral Disc Repair Biology emulating The Stem Cell Instructive and Tissue Reparative Properties of Heparan Sulphate. Stem Cells Dev 2022; 31:406-430. [PMID: 35102748 DOI: 10.1089/scd.2022.0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review highlights the attributes of pentosan polysulphate (PPS) in the promotion of intervertebral disc (IVD) repair processes. PPS has been classified as a disease modifying osteoarthritic drug (DMOAD) and many studies have demonstrated its positive attributes in the countering of degenerative changes occurring in cartilaginous tissues during the development of osteoarthritis (OA). Degenerative changes in the IVD also involve inflammatory cytokines, degradative proteases and cell signalling pathways similar to those operative in the development of OA in articular cartilage. PPS acts as a heparan sulphate (HS) mimetic to effect its beneficial effects in cartilage. The IVD contains small cell membrane HS-proteoglycans (HSPGs) such as syndecan, and glypican and a large multifunctional HS/chondroitin sulphate (CS) hybrid proteoglycan (HSPG2/perlecan) that have important matrix stabilising properties and sequester, control and present growth factors from the FGF, VEGF, PDGF and BMP families to cellular receptors to promote cell proliferation, differentiation and matrix synthesis. HSPG2 also has chondrogenic properties and stimulates the synthesis of extracellular matrix (ECM) components, expansion of cartilaginous rudiments and has roles in matrix stabilisation and repair. Perlecan is a perinuclear and nuclear proteoglycan in IVD cells with roles in chromatin organisation and control of transcription factor activity, immunolocalises to stem cell niches in cartilage, promotes escape of stem cells from quiescent recycling, differentiation and attainment of pluripotency and migratory properties. These participate in tissue development and morphogenesis, ECM remodelling and repair. PPS also localises in the nucleus of stromal stem cells, promotes development of chondroprogenitor cell lineages, ECM synthesis and repair and discal repair by resident disc cells. The availability of recombinant perlecan and PPS offer new opportunities in repair biology. These multifunctional agents offer welcome new developments in repair strategies for the IVD.
Collapse
Affiliation(s)
- Margaret M Smith
- The University of Sydney Raymond Purves Bone and Joint Research Laboratories, 247198, St Leonards, New South Wales, Australia;
| | - Anthony J Hayes
- Cardiff School of Biosciences, University of Cardiff, UK, Bioimaging Unit, Cardiff, Wales, United Kingdom of Great Britain and Northern Ireland;
| | - James Melrose
- Kolling Institute, University of Sydney, Royal North Shore Hospital, Raymond Purves Lab, Sydney Medical School Northern, Level 10, Kolling Institute B6, Royal North Shore Hospital, St. Leonards, New South Wales, Australia, 2065.,University of New South Wales, 7800, Graduate School of Biomedical Engineering, University of NSW, Sydney, New South Wales, Australia, 2052;
| |
Collapse
|
2
|
Ashinsky BG, Gullbrand SE, Bonnevie ED, Mandalapu SA, Wang C, Elliott DM, Han L, Mauck RL, Smith HE. Multiscale and multimodal structure-function analysis of intervertebral disc degeneration in a rabbit model. Osteoarthritis Cartilage 2019; 27:1860-1869. [PMID: 31419488 PMCID: PMC6875634 DOI: 10.1016/j.joca.2019.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The objective of this study was to perform a quantitative analysis of the structural and functional alterations in the intervertebral disc during in vivo degeneration, using emerging tools that enable rigorous assessment from the microscale to the macroscale, as well as to correlate these outcomes with noninvasive, clinically relevant imaging parameters. DESIGN Degeneration was induced in a rabbit model by puncturing the annulus fibrosus (AF) with a 16-gauge needle. 2, 4, 8, and 12 weeks following puncture, degenerative changes in the discs were evaluated via magnetic resonance imaging (MRI), whole motion segment biomechanics, atomic force microscopy, histology and polarized light microscopy, immunohistochemistry, biochemical content, and second harmonic generation imaging. RESULTS Following puncture, degeneration was evident through marked changes in whole disc structure and mechanics. Puncture acutely compromised disc macro and microscale mechanics, followed by progressive stiffening and remodeling. Histological analysis showed substantial anterior fibrotic remodeling and osteophyte formation, as well as an overall reduction in disc height, and disorganization and infolding of the AF lamellae into the NP space. Increases in NP collagen content and aggrecan breakdown products were also noted within 4 weeks. On MRI, NP T2 was reduced at all post-puncture time points and correlated significantly with microscale indentation modulus. CONCLUSION This study defined the time dependent changes in disc structure-function relationships during IVD degeneration in a rabbit annular injury model and correlated degeneration severity with clinical imaging parameters. Our findings identified AF infolding and occupancy of the space as a principle mechanism of disc degeneration in response to needle puncture, and provide new insights to direct the development of novel therapeutics.
Collapse
Affiliation(s)
- Beth G. Ashinsky
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA,Drexel University School of Biomedical Engineering, Philadelphia, PA,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Sarah E. Gullbrand
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Edward D. Bonnevie
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Sai A. Mandalapu
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Chao Wang
- Drexel University School of Biomedical Engineering, Philadelphia, PA
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE
| | - Lin Han
- Drexel University School of Biomedical Engineering, Philadelphia, PA
| | - Robert L. Mauck
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Harvey E. Smith
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA,Address correspondence to: Harvey E. Smith, University of Pennsylvania School of Medicine, Department of Orthopaedic Surgery, 3737 Market Street, 6 Floor, Philadelphia, PA 19104, T: 215-662-3340,
| |
Collapse
|
3
|
Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc Natl Acad Sci U S A 2013; 110:12456-61. [PMID: 23832785 DOI: 10.1073/pnas.1310158110] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A hypothesis and the experiments to test it propose that very long-term memories, such as fear conditioning, are stored as the pattern of holes in the perineuronal net (PNN), a specialized ECM that envelops mature neurons and restricts synapse formation. The 3D intertwining of PNN and synapses would be imaged by serial-section EM. Lifetimes of PNN vs. intrasynaptic components would be compared with pulse-chase (15)N labeling in mice and (14)C content in human cadaver brains. Genetically encoded indicators and antineoepitope antibodies should improve spatial and temporal resolution of the in vivo activity of proteases that locally erode PNN. Further techniques suggested include genetic KOs, better pharmacological inhibitors, and a genetically encoded snapshot reporter, which will capture the pattern of activity throughout a large ensemble of neurons at a time precisely defined by the triggering illumination, drive expression of effector genes to mark those cells, and allow selective excitation, inhibition, or ablation to test their functional importance. The snapshot reporter should enable more precise inhibition or potentiation of PNN erosion to compare with behavioral consequences. Finally, biosynthesis of PNN components and proteases would be imaged.
Collapse
|