1
|
Brocklehurst CE, Altmann E, Bon C, Davis H, Dunstan D, Ertl P, Ginsburg-Moraff C, Grob J, Gosling DJ, Lapointe G, Marziale AN, Mues H, Palmieri M, Racine S, Robinson RI, Springer C, Tan K, Ulmer W, Wyler R. MicroCycle: An Integrated and Automated Platform to Accelerate Drug Discovery. J Med Chem 2024; 67:2118-2128. [PMID: 38270627 DOI: 10.1021/acs.jmedchem.3c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
We herein describe the development and application of a modular technology platform which incorporates recent advances in plate-based microscale chemistry, automated purification, in situ quantification, and robotic liquid handling to enable rapid access to high-quality chemical matter already formatted for assays. In using microscale chemistry and thus consuming minimal chemical matter, the platform is not only efficient but also follows green chemistry principles. By reorienting existing high-throughput assay technology, the platform can generate a full package of relevant data on each set of compounds in every learning cycle. The multiparameter exploration of chemical and property space is hereby driven by active learning models. The enhanced compound optimization process is generating knowledge for drug discovery projects in a time frame never before possible.
Collapse
Affiliation(s)
- Cara E Brocklehurst
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Eva Altmann
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Corentin Bon
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Holly Davis
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - David Dunstan
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Peter Ertl
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Carol Ginsburg-Moraff
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Jonathan Grob
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Daniel J Gosling
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Guillaume Lapointe
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Alexander N Marziale
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Heinrich Mues
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Marco Palmieri
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Sophie Racine
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Richard I Robinson
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Clayton Springer
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Kian Tan
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - William Ulmer
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - René Wyler
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| |
Collapse
|
2
|
Shen M, Wei Y, Kim H, Wan L, Jiang YZ, Hang X, Raba M, Remiszewski S, Rowicki M, Wu CG, Wu S, Zhang L, Lu X, Yuan M, Smith HA, Zheng A, Bertino J, Jin JF, Xing Y, Shao ZM, Kang Y. Small-molecule inhibitors that disrupt the MTDH-SND1 complex suppress breast cancer progression and metastasis. NATURE CANCER 2022; 3:43-59. [PMID: 35121987 PMCID: PMC8818087 DOI: 10.1038/s43018-021-00279-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 09/23/2021] [Indexed: 01/16/2023]
Abstract
Metastatic breast cancer is a leading health burden worldwide. Previous studies have shown that metadherin (MTDH) promotes breast cancer initiation, metastasis and therapy resistance; however, the therapeutic potential of targeting MTDH remains largely unexplored. Here, we used genetically modified mice and demonstrate that genetic ablation of Mtdh inhibits breast cancer development through disrupting the interaction with staphylococcal nuclease domain-containing 1 (SND1), which is required to sustain breast cancer progression in established tumors. We performed a small-molecule compound screening to identify a class of specific inhibitors that disrupts the protein-protein interaction (PPI) between MTDH and SND1 and show that our lead candidate compounds C26-A2 and C26-A6 suppressed tumor growth and metastasis and enhanced chemotherapy sensitivity in preclinical models of triple-negative breast cancer (TNBC). Our results demonstrate a significant therapeutic potential in targeting the MTDH-SND1 complex and identify a new class of therapeutic agents for metastatic breast cancer.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Hahn Kim
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,Princeton University Small Molecule Screening Center, Princeton University, Princeton, NJ 08544, USA
| | - Liling Wan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, P.R. China
| | - Xiang Hang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | - Michelle Rowicki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Cheng-Guo Wu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Songyang Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, P.R. China
| | - Lanjing Zhang
- Department of Pathology, University Medical Center of Princeton, Plainsboro, New Jersey; and Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Xin Lu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Min Yuan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Heath A. Smith
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aiping Zheng
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Joseph Bertino
- Pharmacokinetics and Pharmacodynamics (PK/PD) Shared Resource, Rutgers Cancer Institute of New Jersey Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA,Robert Wood Johnson Medical School Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - John F. Jin
- Firebrand Therapeutics, 174 Nassaue Street, #331, Princeton, NJ, 08542, USA
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, P.R. China
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA,Ludwig Institute for Cancer Research Princeton Branch, Princeton, USA,Correspondence: Yibin Kang, Ph.D., Department of Molecular Biology, Washington Road, LTL 255, Princeton University, Princeton, NJ 08544, Phone: (609) 258-8834; Fax: (609) 258-2340,
| |
Collapse
|
3
|
Boudes M, Garriga D, Coulibaly F. Microcrystallography of Protein Crystals and In Cellulo Diffraction. J Vis Exp 2017. [PMID: 28784967 DOI: 10.3791/55793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The advent of high-quality microfocus beamlines at many synchrotron facilities has permitted the routine analysis of crystals smaller than 10 µm in their largest dimension, which used to represent a challenge. We present two alternative workflows for the structure determination of protein microcrystals by X-ray crystallography with a particular focus on crystals grown in vivo. The microcrystals are either extracted from cells by sonication and purified by differential centrifugation, or analyzed in cellulo after cell sorting by flow cytometry of crystal-containing cells. Optionally, purified crystals or crystal-containing cells are soaked in heavy atom solutions for experimental phasing. These samples are then prepared for diffraction experiments in a similar way by application onto a micromesh support and flash cooling in liquid nitrogen. We briefly describe and compare serial diffraction experiments of isolated microcrystals and crystal-containing cells using a microfocus synchrotron beamline to produce datasets suitable for phasing, model building and refinement. These workflows are exemplified with crystals of the Bombyx mori cypovirus 1 (BmCPV1) polyhedrin produced by infection of insect cells with a recombinant baculovirus. In this case study, in cellulo analysis is more efficient than analysis of purified crystals and yields a structure in ~8 days from expression to refinement.
Collapse
Affiliation(s)
- Marion Boudes
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University
| | - Damià Garriga
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University
| | - Fasséli Coulibaly
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University;
| |
Collapse
|
4
|
Dennis ML, Pitcher NP, Lee MD, DeBono AJ, Wang ZC, Harjani JR, Rahmani R, Cleary B, Peat TS, Baell JB, Swarbrick JD. Structural Basis for the Selective Binding of Inhibitors to 6-Hydroxymethyl-7,8-dihydropterin Pyrophosphokinase from Staphylococcus aureus and Escherichia coli. J Med Chem 2016; 59:5248-63. [PMID: 27094768 DOI: 10.1021/acs.jmedchem.6b00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a member of the folate biosynthesis pathway found in prokaryotes and lower eukaryotes that catalyzes the pyrophosphoryl transfer from the ATP cofactor to a 6-hydroxymethyl-7,8-dihydropterin substrate. We report the chemical synthesis of a series of S-functionalized 8-mercaptoguanine (8MG) analogues as substrate site inhibitors of HPPK and quantify binding against the E. coli and S. aureus enzymes (EcHPPK and SaHPPK). The results demonstrate that analogues incorporating acetophenone-based substituents have comparable affinities for both enzymes. Preferential binding of benzyl-substituted 8MG derivatives to SaHPPK was reconciled when a cryptic pocket unique to SaHPPK was revealed by X-ray crystallography. Differential chemical shift perturbation analysis confirmed this to be a common mode of binding for this series to SaHPPK. One compound (41) displayed binding affinities of 120 nM and 1.76 μM for SaHPPK and EcHPPK, respectively, and represents a lead for the development of more potent and selective inhibitors of SaHPPK.
Collapse
Affiliation(s)
- Matthew L Dennis
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.,CSIRO Biosciences Program , Parkville, Victoria 3052, Australia
| | - Noel P Pitcher
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Michael D Lee
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Aaron J DeBono
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Zhong-Chang Wang
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University , Nanjing 210093, People's Republic of China
| | - Jitendra R Harjani
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Raphaël Rahmani
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Ben Cleary
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Thomas S Peat
- CSIRO Biosciences Program , Parkville, Victoria 3052, Australia
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - James D Swarbrick
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| |
Collapse
|
5
|
Kothandan G, Gadhe CG, Balupuri A, Ganapathy J, Cho SJ. The nociceptin receptor (NOPR) and its interaction with clinically important agonist molecules: a membrane molecular dynamics simulation study. MOLECULAR BIOSYSTEMS 2014; 10:3188-98. [PMID: 25259728 DOI: 10.1039/c4mb00323c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nociceptin receptor (NOPR) is an orphan G protein-coupled receptor that contains seven transmembrane helices. NOPR has a distinct mechanism of activation, though it shares a significant homology with other opioid receptors. Previously there have been reports on homology modeling of NOPR and also molecular dynamics simulation studies for a short period. Recently the crystal structure of NOPR was reported. In this study, we analyzed the time dependent behavior of NOPR docked with clinically important agonist molecules such as NOP (natural agonist) peptide and compound 10 (SCH-221510 derivative) using molecular dynamics simulations (MDS) for 100 ns. Molecular dynamics simulations of NOPR-agonist complexes allowed us to refine the system and to also identify stable structures with better binding modes. Structure activity relationships (SAR) for SCH221510 derivatives were investigated and reasons for the activities of these derivatives were determined. Our molecular dynamics trajectory analysis of NOPR-peptide and NOPR-compound 10 complexes found residues to be crucial for binding. Mutagenesis studies on the residues identified from our analysis could prove useful. Our results could also provide useful information in the structure-based drug design of novel and potent agonists targeting NOPR.
Collapse
Affiliation(s)
- Gugan Kothandan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-600025, India.
| | | | | | | | | |
Collapse
|
6
|
Synthesis and chemoinformatics analysis of N-aryl-β-alanine derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1841-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Choi Y, Kang IC, Cho E, Kim J, Jeong K, Jung S. Molecular Docking and Molecular Dynamics Simulations of the Kinase Domain Inhibitor for an Epidermal Growth Factor Receptor. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.8.2515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|