1
|
Kaiser C, Vogel M, Appel B, Weigand J, Müller S, Suess B, Wachtveitl J. Magnesium Ion-Driven Folding and Conformational Switching Kinetics of Tetracycline Binding Aptamer: Implications for in vivo Riboswitch Engineering. J Mol Biol 2023; 435:168253. [PMID: 37640152 DOI: 10.1016/j.jmb.2023.168253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Engineering in vitro selected RNA aptamers into in vivo functional riboswitches represents a long-standing challenge in molecular biology. The highly specific aptamer domain of the riboswitch undergoes a conformational adjustment in response to ligand sensing, which in turn exerts the regulatory function. Besides essential factors like structural complexity and ligand binding kinetics, the active role of magnesium ions in stabilizing RNA tertiary structures and assisting in ligand binding can be a vital criterion. We present spectroscopic studies on the magnesium ion-driven folding of the Tetracycline binding aptamer. Using fluorescent labels, the aptamer pre-folding and subsequent ligand binding is monitored by magnesium titration experiments and time-resolved stopped-flow measurements. A minimum concentration of 0.5 mM magnesium is required to fold into a magnesium ion-stabilized binding-competent state with a preformed binding pocket. Tetracycline binding causes a pronounced conformational change that results in the establishment of the triple helix core motif, and that further propagates towards the closing stem. By a dynamic acquisition of magnesium ions, a kink motif is formed at the intersection of the triple helix and closing stem regions. This ultimately entails a stabilization of the closing stem which is discussed as a key element in the regulatory function of the Tetracycline aptamer.
Collapse
Affiliation(s)
- Christoph Kaiser
- Institute for Physical and Theoretical Chemistry, Goethe University, Frankfurt/Main, Max-von-Laue Str. 9, D-60438, Germany.
| | - Marc Vogel
- Department of Biology, Technical University Darmstadt, Darmstadt, Schnittspahnstraße 10, D-64287 Darmstadt, Germany
| | - Bettina Appel
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Julia Weigand
- Department of Biology, Technical University Darmstadt, Darmstadt, Schnittspahnstraße 10, D-64287 Darmstadt, Germany; Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Marbacher Weg 6, D-35037, Germany. https://twitter.com/WachtveitlLab
| | - Sabine Müller
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, Darmstadt, Schnittspahnstraße 10, D-64287 Darmstadt, Germany; Centre for Synthetic Biology, Technical University Darmstadt, Darmstadt, Germany.
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe University, Frankfurt/Main, Max-von-Laue Str. 9, D-60438, Germany.
| |
Collapse
|
2
|
Menger M, Yarman A, Erdőssy J, Yildiz HB, Gyurcsányi RE, Scheller FW. MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing. BIOSENSORS 2016; 6:E35. [PMID: 27438862 PMCID: PMC5039654 DOI: 10.3390/bios6030035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/04/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.
Collapse
Affiliation(s)
- Marcus Menger
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, Potsdam D-14476, Germany.
| | - Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 25-26, Potsdam D-14476, Germany.
- Turkish-German University, Faculty of Science, Molecular Biotechnology, Sahinkaya Cad. No. 86, Bekoz, Istanbul 34820, Turkey.
| | - Júlia Erdőssy
- MTA-BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary.
| | - Huseyin Bekir Yildiz
- Department of Materials Science and Nanotechnology Engineering, KTO Karatay University, Konya 42020, Turkey.
| | - Róbert E Gyurcsányi
- MTA-BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary.
| | - Frieder W Scheller
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, Potsdam D-14476, Germany.
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 25-26, Potsdam D-14476, Germany.
| |
Collapse
|
3
|
Xu J, Appel B, Balke D, Wichert C, Müller S. RNA aminoacylation mediated by sequential action of two ribozymes and a nonactivated amino acid. Chembiochem 2014; 15:1200-9. [PMID: 24764272 DOI: 10.1002/cbic.201300741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Indexed: 01/29/2023]
Abstract
In the transition from the RNA world to the modern DNA/protein world, RNA-catalyzed aminoacylation might have been a key step towards early translation. A number of ribozymes capable of aminoacylating their own 3' termini have been developed by in vitro selection. However, all of those catalysts require a previously activated amino acid-typically an aminoacyl-AMP-as substrate. Here we present two ribozymes connected by intermolecular base pairing and carrying out the two steps of aminoacylation: ribozyme 1 loads nonactivated phenylalanine onto its phosphorylated 5' terminus, thereby forming a high-energy mixed anhydride. Thereafter, a complex of ribozymes 1 and 2 is formed by intermolecular base pairing, and the "activated" phenylalanine is transferred from the 5' terminus of ribozyme 1 to the 3' terminus of ribozyme 2. This kind of simple RNA aminoacylase complex was engineered from previously selected ribozymes possessing the two required activities. RNA aminoacylation with a nonactivated amino acid as described here is advantageous to RNA world scenarios because initial amino acid activation by an additional reagent (in most cases, ATP) and an additional ribozyme would not be necessary.
Collapse
Affiliation(s)
- Jiacui Xu
- Ernst Moritz Arndt Universität Greifswald, Institut für Biochemie, Felix Hausdorff Strasse 4, 17487 Greifswald (Germany); Current address: Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706 (USA)
| | | | | | | | | |
Collapse
|
4
|
Frommer J, Hieronymus R, Selvi Arunachalam T, Heeren S, Jenckel M, Strahl A, Appel B, Müller S. Preparation of modified long-mer RNAs and analysis of FMN binding to the ypaA aptamer from B. subtilis. RNA Biol 2014; 11:609-23. [PMID: 24755604 DOI: 10.4161/rna.28526] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In recent years, RNA has been shown to fulfil a number of cellular functions. This has led to much interest in elucidation of the structure of functional RNA molecules, and thus, in the preparation of suitably functionalized RNAs. The chemical synthesis of RNAs allows for the site-specific modification; however, is limited to sequences of about 60-70 nucleotides in length. At the example of the flavine mononucleotide (FMN) responsive aptamer of the ypaA riboswitch from B. subtilis, we demonstrate the highly efficient preparation of site-specifically modified long-mer RNAs. Our strategy consists of the chemical synthesis of fragments followed by enzymatic or chemical ligation. Splint ligation with T4 RNA ligase turned out to be most successful among the enyzymatic protocols. Highly efficient chemical ligation was performed by azide-alkyne cycloaddition of suitably modified RNA fragments. Wild-type and 2-aminopurine (2-AP)-modified variants of the ypaA aptamer were prepared. FMN binding to all synthesized ypaA aptamer variants is demonstrated. However, dissociation of FMN from its binding site by reduction of the isoalloxazin unit as demonstrated before for a small-hairpin-derived aptazyme could not be shown. This implies that either FMN is less accessible to reduction when it is bound to its natural aptamer; that reduced FMN remains bound to the aptamer; or that FMN upon reduction indeed is released from its binding site, without the aptamer folding back in the natural ligand-free state. The results of this study are of general interest to the preparation of site-specifically modified RNAs for investigation into structure and function.
Collapse
Affiliation(s)
- Jennifer Frommer
- Ernst Moritz Arndt University Greifswald; Institute for Biochemistry; Greifswald, Germany
| | - Robert Hieronymus
- Ernst Moritz Arndt University Greifswald; Institute for Biochemistry; Greifswald, Germany
| | - Tamil Selvi Arunachalam
- Ernst Moritz Arndt University Greifswald; Institute for Biochemistry; Greifswald, Germany; PG and Research Department of Chemistry; Thiagarajar College (Autonomous); Madurai, India
| | - Sabine Heeren
- Ernst Moritz Arndt University Greifswald; Institute for Biochemistry; Greifswald, Germany; Hochschule Neubrandenburg; Fachbereich Agrarwirtschaft und Lebensmittelwissenschaften; AG Landwirtschaftliche Chemie; Neubrandenburg, Germany
| | - Maria Jenckel
- Ernst Moritz Arndt University Greifswald; Institute for Biochemistry; Greifswald, Germany; Friedrich-Loeffler-Institut; Institut für Virusdiagnostik; Südufer 10; Riems, Germany
| | - Anne Strahl
- Ernst Moritz Arndt University Greifswald; Institute for Biochemistry; Greifswald, Germany
| | - Bettina Appel
- Ernst Moritz Arndt University Greifswald; Institute for Biochemistry; Greifswald, Germany
| | - Sabine Müller
- Ernst Moritz Arndt University Greifswald; Institute for Biochemistry; Greifswald, Germany
| |
Collapse
|