1
|
Telekes A, Horváth A. The Role of Cell-Free DNA in Cancer Treatment Decision Making. Cancers (Basel) 2022; 14:6115. [PMID: 36551600 PMCID: PMC9776613 DOI: 10.3390/cancers14246115] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to evaluate the present status of the use of cell-free DNA and its fraction of circulating tumor DNA (ctDNA) because this year July 2022, an ESMO guideline was published regarding the application of ctDNA in patient care. This review is for clinical oncologists to explain the concept, the terms used, the pros and cons of ctDNA; thus, the technical aspects of the different platforms are not reviewed in detail, but we try to help in navigating the current knowledge in liquid biopsy. Since the validated and adequately sensitive ctDNA assays have utility in identifying actionable mutations to direct targeted therapy, ctDNA may be used for this soon in routine clinical practice and in other different areas as well. The cfDNA fragments can be obtained by liquid biopsy and can be used for diagnosis, prognosis, and selecting among treatment options in cancer patients. A great proportion of cfDNA comes from normal cells of the body or from food uptake. Only a small part (<1%) of it is related to tumors, originating from primary tumors, metastatic sites, or circulating tumor cells (CTCs). Soon the data obtained from ctDNA may routinely be used for finding minimal residual disease, detecting relapse, and determining the sites of metastases. It might also be used for deciding appropriate therapy, and/or emerging resistance to the therapy and the data analysis of ctDNA may be combined with imaging or other markers. However, to achieve this goal, further clinical validations are inevitable. As a result, clinicians should be aware of the limitations of the assays. Of course, several open questions are still under research and because of it cfDNA and ctDNA testing are not part of routine care yet.
Collapse
Affiliation(s)
- András Telekes
- Omnimed-Etosz, Ltd., 81 Széher Rd., 1021 Budapest, Hungary
- Semmelweis University, 26. Üllői Rd., 1085 Budapest, Hungary
| | - Anna Horváth
- Department of Internal Medicine and Haematology, Semmelweis University, 46. Szentkirályi Rd., 1088 Budapest, Hungary
| |
Collapse
|
2
|
Liang Y, Chiu PKF, Zhu Y, Wong CYP, Xiong Q, Wang L, Teoh JYC, Cao Q, Wei Y, Ye DW, Tsui SKW, Ng CF. Whole-exome sequencing reveals a comprehensive germline mutation landscape and identifies twelve novel predisposition genes in Chinese prostate cancer patients. PLoS Genet 2022; 18:e1010373. [PMID: 36095024 PMCID: PMC9499300 DOI: 10.1371/journal.pgen.1010373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/22/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer is the most inheritable cancer with approximately 42% of disease risk attributed to inherited factors by studies of twins, indicating the importance of additional genetic screening to identify predisposition variants. However, only DNA damage repair (DDR) genes have been investigated thoroughly in prostate cancer. To determine the comprehensive germline mutation landscape in Chinese prostate cancer patients, we performed whole exome sequencing in 100 Han Chinese patients with prostate cancer in Hong Kong and identified deleterious germline mutations. A total of 36 deleterious germline variants in 25 genes were identified in 29% patients. Variants were found in eight pathways, including DNA methylation, DDR, and tyrosine-protein kinase. These findings were validated in an independent Chinese cohort of 167 patients with prostate cancer in Shanghai. Seven common deleterious-variant-containing genes were found in discovery cohort (7/25, 28%) and validation cohort (7/28, 25%) with three genes not described before (LDLR, MYH7 and SUGCT) and four genes previously reported (FANCI, ITGA6, PABPC1 and RAD54B). When comparing with that of a cohort of East Asian healthy individuals, 12 non-DDR novel potential predisposition genes (ADGRG1, CHD4, DNMT3A, ERBB3, GRHL1, HMBS, LDLR, MYH7, MYO6, NT5C2, NUP98 and SUGCT) were identified using the discovery and validation cohorts, which have not been previously reported in prostate cancer patients in all ethnic groups. Taken together, this study reveals a comprehensive germline mutation landscape in Chinese prostate cancer patients and discovers 12 novel non-DDR predisposition genes to lay the groundwork for the optimization of genetic screening. Prostate cancer is the most inheritable cancer with about 42% of disease risk attributed to inherited factors, indicating the importance of additional genetic screening to identify predisposition variants. However, only DNA damage repair (DDR) genes have been studied thoroughly in prostate cancer. To determine the comprehensive germline mutation landscape in Chinese prostate cancer patients, we performed whole exome sequencing in 100 Han Chinese patients with prostate cancer in Hong Kong and identified deleterious germline mutations. A total of 36 deleterious germline variants in 25 genes were identified in 29% patients. Variants were found in eight pathways, including DNA methylation, DDR, and tyrosine-protein kinase. These findings were validated in an independent Chinese cohort of 167 patients with prostate cancer in Shanghai. Seven common deleterious-variant-containing genes were found in discovery cohort and validation cohort with three genes not described before (LDLR, MYH7 and SUGCT) and four genes previously reported. When comparing with that of a cohort of East Asian healthy individuals, 12 non-DDR novel potential predisposition genes were identified using the discovery and validation cohorts, which have not been previously reported in prostate cancer patients in all ethnic groups.
Collapse
Affiliation(s)
- Yonghao Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Peter Ka-Fung Chiu
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Christine Yim-Ping Wong
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeremy Yuen-Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qin Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (SK-WT); (C-FN)
| | - Chi-Fai Ng
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (SK-WT); (C-FN)
| |
Collapse
|
3
|
Xu Y, Tsai CW, Chang WS, Han Y, Huang M, Pettaway CA, Bau DT, Gu J. Epigenome-Wide Association Study of Prostate Cancer in African Americans Identifies DNA Methylation Biomarkers for Aggressive Disease. Biomolecules 2021; 11:1826. [PMID: 34944472 PMCID: PMC8698937 DOI: 10.3390/biom11121826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
DNA methylation plays important roles in prostate cancer (PCa) development and progression. African American men have higher incidence and mortality rates of PCa than other racial groups in U.S. The goal of this study was to identify differentially methylated CpG sites and genes between clinically defined aggressive and nonaggressive PCa in African Americans. We performed genome-wide DNA methylation profiling in leukocyte DNA from 280 African American PCa patients using Illumina MethylationEPIC array that contains about 860K CpG sties. There was a slight increase of overall methylation level (mean β value) with the increasing Gleason scores (GS = 6, GS = 7, GS ≥ 8, P for trend = 0.002). There were 78 differentially methylated CpG sites with P < 10-4 and 9 sites with P < 10-5 in the trend test. We also found 77 differentially methylated regions/genes (DMRs), including 10 homeobox genes and six zinc finger protein genes. A gene ontology (GO) molecular pathway enrichment analysis of these 77 DMRs found that the main enriched pathway was DNA-binding transcriptional factor activity. A few representative DMRs include HOXD8, SOX11, ZNF-471, and ZNF-577. Our study suggests that leukocyte DNA methylation may be valuable biomarkers for aggressive PCa and the identified differentially methylated genes provide biological insights into the modulation of immune response by aggressive PCa.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.X.); (C.-W.T.); (W.-S.C.); (M.H.)
| | - Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.X.); (C.-W.T.); (W.-S.C.); (M.H.)
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung 404332, Taiwan;
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.X.); (C.-W.T.); (W.-S.C.); (M.H.)
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung 404332, Taiwan;
| | - Yuyan Han
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA;
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.X.); (C.-W.T.); (W.-S.C.); (M.H.)
| | - Curtis A. Pettaway
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung 404332, Taiwan;
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.X.); (C.-W.T.); (W.-S.C.); (M.H.)
| |
Collapse
|
4
|
Heninger E, Kosoff D, Rodems TS, Sethakorn N, Singh A, Gungurthi H, Carlson KN, Yang B, Gilsdorf C, Pasch CA, Deming DA, Ellis L, Beebe DJ, Jarrard DF, Lang JM. Live cell molecular analysis of primary prostate cancer organoids identifies persistent androgen receptor signaling. Med Oncol 2021; 38:135. [PMID: 34581895 PMCID: PMC8478748 DOI: 10.1007/s12032-021-01582-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/12/2021] [Indexed: 11/29/2022]
Abstract
Prostate Cancer (PC) is a disease with remarkable tumor heterogeneity that often manifests in significant intra-patient variability with regards to clinical outcomes and treatment response. Commonly available PC cell lines do not accurately reflect the complexity of this disease and there is critical need for development of new models to recapitulate the intricate hierarchy of tumor pathogenesis. In current study, we established ex vivo primary patient-derived cancer organoid (PDCO) cultures from prostatectomy specimens of patients with locally advanced PC. We then performed a comprehensive multi-parameter characterization of the cellular composition utilizing a novel approach for live-cell staining and direct imaging in the integrated microfluidic Stacks device. Using orthogonal flow cytometry analysis, we demonstrate that primary PDCOs maintain distinct subsets of epithelial cells throughout culture and that these cells conserve expression of androgen receptor (AR)-related elements. Furthermore, to confirm the tumor-origin of the PDCOs we have analyzed the expression of PC-associated epigenetic biomarkers including promoter methylation of the GSTP1, RASSF1 and APC and RARb genes by employing a novel microfluidic rare-event screening protocol. These results demonstrate that this ex vivo PDCO model recapitulates the complexity of the epithelial tumor microenvironment of multifocal PC using orthogonal analyses. Furthermore, we propose to leverage the Stacks microfluidic device as a high-throughput, translational platform to interrogate phenotypic and molecular endpoints with the capacity to incorporate a complex tumor microenvironment.
Collapse
Affiliation(s)
- Erika Heninger
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave., Madison, USA
| | - David Kosoff
- Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Tamara S Rodems
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave., Madison, USA
| | - Nan Sethakorn
- Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Anupama Singh
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave., Madison, USA
| | - Harshitha Gungurthi
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave., Madison, USA
| | - Kristin N Carlson
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave., Madison, USA
| | - Bing Yang
- Department of Urology, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Cole Gilsdorf
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave., Madison, USA
| | - Cheri A Pasch
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave., Madison, USA
| | - Dustin A Deming
- Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Leigh Ellis
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - David J Beebe
- Department of Pathology and Laboratory Medicine, 1111 Highland Ave., Madison, WI, 53705, USA
| | - David F Jarrard
- Department of Urology, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Joshua M Lang
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave., Madison, USA. .,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA. .,Wisconsin Institutes for Medical Research, Rm 7151, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
5
|
Barul C, Parent ME. Occupational exposure to polycyclic aromatic hydrocarbons and risk of prostate cancer. Environ Health 2021; 20:71. [PMID: 34154586 PMCID: PMC8218525 DOI: 10.1186/s12940-021-00751-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/23/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Several industries entailing exposure to polycyclic aromatic hydrocarbons (PAHs) are known or suspected carcinogens. A handful of studies have assessed the role of PAHs exposure in prostate cancer risk, but none has examined tumor aggressiveness or the influence of screening practices and detection issues. We aimed to examine the association between lifetime occupational exposure to PAHs and prostate cancer risk. METHODS Detailed work histories were collected from 1,929 prostate cancer cases (436 aggressive) and 1,994 controls from Montreal, Canada (2005-2012). Industrial hygienists applied the hybrid expert approach to assign intensity, frequency and certainty of exposure to benzo[a]pyrene, PAHs from wood, coal, petroleum, other sources, and any source, in each job held. Odds ratios (ORs) for prostate cancer risk associated with lifetime PAHs exposure, adjusted for age, ancestry, education, lifestyle and occupational factors, and 95% confidence intervals (CI), were estimated using unconditional logistic regression. RESULTS After restriction to probable and definite exposures, and application of a 5-year lag, no clear association emerged for any of the PAHs, although small excesses in risk were apparent with 5-year increments in exposure to PAHs from wood (OR = 1.06, 95%CI 0.95 to 1.18). While analyses by cancer aggressiveness suggested no major differences, some elevated risk of high-grade cancer was observed for exposure to PAHs from wood (OR = 1.37, 95%CI 0.65 to 2.89), frequently occurring among firefighters. CONCLUSION Findings provide weak support for an association between occupational exposure to PAHs from wood and prostate cancer risk.
Collapse
Affiliation(s)
- Christine Barul
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7 Canada
| | - Marie-Elise Parent
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7 Canada
- Department of Social and Preventive Medicine, School of Public Health, Université de Montréal, Montréal, Québec Canada
- University of Montreal’s Hospital Research Centre, Montréal, Québec Canada
| |
Collapse
|
6
|
Hou X, Zhang Y, Han S, Hou B. A novel DNA methylation 10-CpG prognostic signature of disease-free survival reveal that MYBL2 is associated with high risk in prostate cancer. Expert Rev Anticancer Ther 2020; 20:1107-1119. [PMID: 33073649 DOI: 10.1080/14737140.2020.1838280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Prostate cancer (PC) is the most common non-cutaneous malignancy among men in the western world. However, heterogeneity remains a pressing clinical problem. RESEARCH DESIGN AND METHODS The least absolute shrinkage and selection operator (LASSO) was used to screen the prognostic signature. Weighted correlation network analysis (WGCNA) was used to identify the target genes associated with high-risk characteristics. Gene set enrichment analysis was used to suggest the molecular mechanism of MYBL2 in PC. In addition, in vitro experiments were carried out to validate the role of MYBL2 in PC. RESULTS Ten DNA methylation sites were selected as the prognostic signature. A high expression of MYBL2 was associated with a poor prognosis in PC patients. The effect of MYBL2 in PC was related to KRAS, AKT, IL21, and ATM. MYBL2 facilitates the proliferation, migration, invasion, and metastasis of PC cells. CONCLUSIONS We developed a DNA methylation 10-CpG prognostic signature to predict the prognosis of PC patients. And the high expression of MYBL2 in PC may be related to poor prognosis.
Collapse
Affiliation(s)
- Xueying Hou
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University , Shenyang, Liaoning Province, People's Republic of China.,School of Postgraduate, China Medical University , Shenyang, Liaoning, People's Republic of China
| | - Yuelin Zhang
- School of Postgraduate, China Medical University , Shenyang, Liaoning, People's Republic of China.,China Medical University , Shenyang, People's Republic of China
| | | | - Baoxian Hou
- Department of Orthopedic Surgery, Shenyang Orthopaedics Hospital , Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
7
|
Wang Y, Franks JM, Whitfield ML, Cheng C. BioMethyl: an R package for biological interpretation of DNA methylation data. Bioinformatics 2020; 35:3635-3641. [PMID: 30799505 PMCID: PMC6761945 DOI: 10.1093/bioinformatics/btz137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/25/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022] Open
Abstract
Motivation The accumulation of publicly available DNA methylation datasets has resulted in the need for tools to interpret the specific cellular phenotypes in bulk tissue data. Current approaches use either single differentially methylated CpG sites or differentially methylated regions that map to genes. However, these approaches may introduce biases in downstream analyses of biological interpretation, because of the variability in gene length. There is a lack of approaches to interpret DNA methylation effectively. Therefore, we have developed computational models to provide biological interpretation of relevant gene sets using DNA methylation data in the context of The Cancer Genome Atlas. Results We illustrate that Biological interpretation of DNA Methylation (BioMethyl) utilizes the complete DNA methylation data for a given cancer type to reflect corresponding gene expression profiles and performs pathway enrichment analyses, providing unique biological insight. Using breast cancer as an example, BioMethyl shows high consistency in the identification of enriched biological pathways from DNA methylation data compared to the results calculated from RNA sequencing data. We find that 12 out of 14 pathways identified by BioMethyl are shared with those by using RNA-seq data, with a Jaccard score 0.8 for estrogen receptor (ER) positive samples. For ER negative samples, three pathways are shared in the two enrichments with a slight lower similarity (Jaccard score = 0.6). Using BioMethyl, we can successfully identify those hidden biological pathways in DNA methylation data when gene expression profile is lacking. Availability and implementation BioMethyl R package is freely available in the GitHub repository (https://github.com/yuewangpanda/BioMethyl). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yue Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jennifer M Franks
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Michael L Whitfield
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chao Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Epigenetic Analysis of Circulating Tumor DNA in Localized and Metastatic Prostate Cancer: Evaluation of Clinical Biomarker Potential. Cells 2020; 9:cells9061362. [PMID: 32486483 PMCID: PMC7349912 DOI: 10.3390/cells9061362] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Novel and minimally-invasive prostate cancer (PCa)-specific biomarkers are needed to improve diagnosis and risk stratification. Here, we investigated the biomarker potential in localized and de novo metastatic PCa (mPCa) of methylated circulating tumor DNA (ctDNA) in plasma. Using the Marmal-aid database and in-house datasets, we identified three top candidates specifically hypermethylated in PCa tissue: DOCK2, HAPLN3, and FBXO30 (specificity/sensitivity: 80%-100%/75-94%). These candidates were further analyzed in plasma samples from 36 healthy controls, 61 benign prostatic hyperplasia (BPH), 102 localized PCa, and 65 de novo mPCa patients using methylation-specific droplet digital PCR. Methylated ctDNA for DOCK2/HAPLN3/FBXO30 was generally not detected in healthy controls, BPH patients, nor in patients with localized PCa despite a positive signal in 98%-100% of matched radical prostatectomy tissue samples. However, ctDNA methylation of DOCK2, HAPLN3, and/or FBXO30 was detected in 61.5% (40/65) of de novo mPCa patients and markedly increased in high- compared to low-volume mPCa (89.3% (25/28) vs. 32.1% (10/31), p < 0.001). Moreover, detection of methylated ctDNA was associated with significantly shorter time to progression to metastatic castration resistant PCa, independent of tumor-volume. These results indicate that methylated ctDNA (DOCK2/HAPLN3/FBXO30) may be potentially useful for identification of hormone-naïve mPCa patients who could benefit from intensified treatment.
Collapse
|
9
|
Cui J, Li G, Yin J, Li L, Tan Y, Wei H, Liu B, Deng L, Tang J, Chen Y, Yi L. GSTP1 and cancer: Expression, methylation, polymorphisms and signaling (Review). Int J Oncol 2020; 56:867-878. [PMID: 32319549 DOI: 10.3892/ijo.2020.4979] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/17/2020] [Indexed: 01/04/2023] Open
Abstract
Glutathione S‑transferase Pi (GSTP1) is an isozyme encoded by the GST pi gene that plays an important regulatory role in detoxification, anti‑oxidative damage, and the occurrence of various diseases. The aim of the present study was to review the association between the expression of GSTP1 and the development and treatment of various cancers, and discuss GSTP1 methylation in several malignant tumors, such as prostate, breast and lung cancer, as well as hepatocellular carcinoma; to review the association between polymorphism of the GSTP1 gene and various diseases; and to review the effects of GSTP1 on electrophilic oxidative stress, cell signal transduction, and the regulation of carcinogenic factors. Collectively, GSTP1 plays a major role in the development of various diseases.
Collapse
Affiliation(s)
- Jian Cui
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Guoqing Li
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jie Yin
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Linwei Li
- Department of Laboratory, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yue Tan
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Haoran Wei
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Bang Liu
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lihong Deng
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jialu Tang
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yonglin Chen
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lan Yi
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
10
|
Xu J, Tsai CW, Chang WS, Han Y, Bau DT, Pettaway CA, Gu J. Methylation of global DNA repeat LINE-1 and subtelomeric DNA repeats D4Z4 in leukocytes is associated with biochemical recurrence in African American prostate cancer patients. Carcinogenesis 2019; 40:1055-1060. [PMID: 30874286 DOI: 10.1093/carcin/bgz061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 11/13/2022] Open
Abstract
Global DNA methylation may play important roles in cancer etiology and prognosis. The goal of this study is to investigate whether the methylation of long interspersed nucleotide elements (LINE-1) and subtelomeric DNA repeats D4Z4 in leukocyte DNA is associated with aggressive prostate cancer (PCa) in African Americans. We measured DNA methylation levels of LINE-1 and D4Z4 in 306 African American (AA) PCa patients using pyrosequencing and compared their methylation levels among clinical variables. We further applied multivariate Cox proportional hazards model and Kaplan-Meier survival function and log-rank tests to assess the association between DNA methylation and biochemical recurrence (BCR). Overall, there was no significant difference of the methylation levels of LINE-1 and D4Z4 among patients with different clinical and epidemiological characteristics. However, the methylation of LINE-1 and D4Z4 was associated with BCR. Patients with lower LINE-1 methylation and higher D4Z4 methylation exhibited markedly increased risks of BCR with adjusted hazard ratios of 3.34 (95% confidence interval, 1.32-8.45) and 4.12 (95% confidence interval, 1.32-12.86), respectively, and significantly shorter BCR-free survival times. Our results suggest that lower global DNA methylation and higher subtelomeric region methylation may predict worse prognosis in localized AA PCa patients.
Collapse
Affiliation(s)
- Junfeng Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Yuyan Han
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Da-Tian Bau
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Curtis A Pettaway
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Nissar S, Sameer AS, Rasool R, Chowdri NA, Rashid F. Promoter methylation and Ile105val polymorphism of GSTP1 gene in the modulation of colorectal cancer risk in ethnic Kashmiri population. Indian J Cancer 2019; 56:248-253. [PMID: 31389389 DOI: 10.4103/ijc.ijc_11_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Glutathione-S-transferases (GSTs) are the most important phase II enzymes of the xenobiotic pathway responsible for the detoxification of carcinogens. GSTP1 gene polymorphisms are mostly associated with a lack or an alteration of enzymatic activity toward several substrates thus resulting in increased cancer susceptibility. GSTP1 promoter methylation is also frequently associated with tumor development or poor prognosis in a wide range of tumors. AIM In this study, we examined the role of genetic polymorphism and promoter methylation of GSTP1 gene in the context of modulation of risk of colorectal cancer (CRC) in Kashmiri population. METHODS This study used tissue tumor samples (114) and blood samples from (160) patients with CRC and 200 blood samples from healthy donors. GSTP1 polymorphism was studied using polymerase chain reaction (PCR)-restriction fragment length polymorphism and methylation using methylation-specific PCR. RESULTS There was no significant association between GSTP1 I105V genotypes and the CRC (P>0.05). However, we found a significant association of the Val/Val variant genotype with the dwelling and smoking status (P-value < 0.05). Overall, the homozygous variant Val/Val genotype was associated with a modestly elevated risk for CRC (OR = 1.57; 95% CI = 0.67-3.57). Methyl-specific-PCR analysis revealed 25.4% methylation of the GSTP1 promoter in CRC cases and was not found to be statistically significantly associated with clinicopathological parameters of the CRC cases (P>0.05). Also, no significant associations of any of the three genotypes with promoter hypermethylation were observed. CONCLUSION We conclude that promoter hypermethylation in homozygous GSTP1 mutants did not elevate the risk of CRC in Kashmiri population.
Collapse
Affiliation(s)
- Saniya Nissar
- Departments of Biochemistry and Clinical Biochemistry, University of Kashmir; Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Aga Syed Sameer
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India; Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, KSA
| | - Roohi Rasool
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Nissar A Chowdri
- Department of Surgery, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Fouzia Rashid
- Department of Clinical Biochemistry, University of Kashmir, Soura, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
12
|
Gurioli G, Martignano F, Salvi S, Costantini M, Gunelli R, Casadio V. GSTP1 methylation in cancer: a liquid biopsy biomarker? Clin Chem Lab Med 2019; 56:702-717. [PMID: 29305565 DOI: 10.1515/cclm-2017-0703] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022]
Abstract
The coding region of GSTP1 gene is preceded by a large CpG-rich region that is frequently affected by methylation. In many cancer types, GSTP1 is affected by hypermethylation and, as a consequence, it has a low expression. The aim of this review is to give an overview on GSTP1 methylation studies with a special focus on liquid biopsy, thus to summarize methods, results, sample types, different diseases, to have a complete information regarding this promising epigenetic biomarker. We used all the most valuable scientific search engines (PubMed, Medline, Scopus and Web of Science) searching the following keywords: GSTP1, methylation, cancer, urine, serum, plasma and blood. GSTP1 is a largely investigated tissue biomarker in several malignancies such as prostate, breast, lung and hepatocellular carcinoma with good performances especially for diagnostic purposes. As a liquid biopsy biomarker, it has been mainly investigated in prostate cancer (PCa) where it showed a high specificity but a low sensitivity; thus, it is recommended in combination with other biomarkers. Despite the large number of published papers and the promising results, GSTP1 has not yet entered the clinical practice even for PCa diagnosis. For this reason, further large and prospective studies are needed to validate this assay.
Collapse
Affiliation(s)
- Giorgia Gurioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Filippo Martignano
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Samanta Salvi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Matteo Costantini
- Pathology Unit, Department of Medical Oncology, Morgagni Pierantoni Hospital, Forlì, Italy
| | - Roberta Gunelli
- Department of Urology, Morgagni Pierantoni Hospital, Forli, Italy
| | - Valentina Casadio
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
13
|
Phenotype-independent DNA methylation changes in prostate cancer. Br J Cancer 2018; 119:1133-1143. [PMID: 30318509 PMCID: PMC6219500 DOI: 10.1038/s41416-018-0236-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022] Open
Abstract
Background Human prostate cancers display numerous DNA methylation changes compared to normal tissue samples. However, definitive identification of features related to the cells’ malignant status has been compromised by the predominance of cells with luminal features in prostate cancers. Methods We generated genome-wide DNA methylation profiles of cell subpopulations with basal or luminal features isolated from matched prostate cancer and normal tissue samples. Results Many frequent DNA methylation changes previously attributed to prostate cancers are here identified as differences between luminal and basal cells in both normal and cancer samples. We also identified changes unique to each of the two cancer subpopulations. Those specific to cancer luminal cells were associated with regulation of metabolic processes, cell proliferation and epithelial development. Within the prostate cancer TCGA dataset, these changes were able to distinguish not only cancers from normal samples, but also organ-confined cancers from those with extraprostatic extensions. Using changes present in both basal and luminal cancer cells, we derived a new 17-CpG prostate cancer signature with high predictive power in the TCGA dataset. Conclusions This study demonstrates the importance of comparing phenotypically matched prostate cell populations from normal and cancer tissues to unmask biologically and clinically relevant DNA methylation changes.
Collapse
|
14
|
Haldrup C, Pedersen AL, Øgaard N, Strand SH, Høyer S, Borre M, Ørntoft TF, Sørensen KD. Biomarker potential of ST6GALNAC3 and ZNF660 promoter hypermethylation in prostate cancer tissue and liquid biopsies. Mol Oncol 2018; 12:545-560. [PMID: 29465788 PMCID: PMC5891052 DOI: 10.1002/1878-0261.12183] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/17/2017] [Accepted: 02/14/2018] [Indexed: 01/04/2023] Open
Abstract
Current diagnostic and prognostic tools for prostate cancer (PC) are suboptimal, leading to overdiagnosis and overtreatment. Aberrant promoter hypermethylation of specific genes has been suggested as novel candidate biomarkers for PC that may improve diagnosis and prognosis. We here analyzed ST6GALNAC3 and ZNF660 promoter methylation in prostate tissues, and ST6GALNAC3,ZNF660,CCDC181, and HAPLN3 promoter methylation in liquid biopsies. First, using four independent patient sample sets, including a total of 110 nonmalignant (NM) and 705 PC tissue samples, analyzed by methylation‐specific qPCR or methylation array, we found that hypermethylation of ST6GALNAC3 and ZNF660 was highly cancer‐specific with areas under the curve (AUC) of receiver operating characteristic (ROC) curve analysis of 0.917–0.995 and 0.846–0.903, respectively. Furthermore, ZNF660 hypermethylation was significantly associated with biochemical recurrence in two radical prostatectomy (RP) cohorts of 158 and 392 patients and remained significant also in the subsets of patients with Gleason score ≤7 (univariate Cox regression and log‐rank tests, P < 0.05), suggesting that ZNF660 methylation analysis can potentially help to stratify low‐/intermediate‐grade PCs into indolent vs. more aggressive subtypes. Notably, ZNF660 hypermethylation was also significantly associated with poor overall and PC‐specific survival in the RP cohort (n = 158) with long clinical follow‐up available. Moreover, as proof of principle, we successfully detected highly PC‐specific hypermethylated circulating tumor DNA (ctDNA) for ST6GALNAC3,ZNF660,HAPLN3, and CCDC181 in liquid biopsies (serum) from 27 patients with PC vs. 10 patients with BPH, using droplet digital methylation‐specific PCR analysis. Finally, we generated a three‐gene (ST6GALNAC3/CCDC181/HAPLN3) ctDNA hypermethylation model, which detected PC with 100% specificity and 67% sensitivity. In conclusion, we here for the first time demonstrate diagnostic biomarker potential of ST6GALNAC3 and ZNF660 methylation, as well as prognostic biomarker potential of ZNF660. Furthermore, we show that hypermethylation of four genes can be detected in ctDNA in liquid biopsies (serum) from patients with PC.
Collapse
Affiliation(s)
- Christa Haldrup
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | - Anne L Pedersen
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | - Nadia Øgaard
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | - Siri H Strand
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | - Søren Høyer
- Department of Histopathology, Aarhus University Hospital, Denmark
| | - Michael Borre
- Department of Urology, Aarhus University Hospital, Denmark
| | - Torben F Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| | - Karina D Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Denmark
| |
Collapse
|
15
|
MIEN1 is tightly regulated by SINE Alu methylation in its promoter. Oncotarget 2018; 7:65307-65319. [PMID: 27589566 PMCID: PMC5323157 DOI: 10.18632/oncotarget.11675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/18/2016] [Indexed: 01/26/2023] Open
Abstract
Migration and invasion enhancer 1 (MIEN1) is a novel gene involved in prostate cancer progression by enhancing prostate cancer cell migration and invasion. DNA methylation, an important epigenetic regulation, is one of the most widely altered mechanisms in prostate cancer. This phenomenon frames the basis to study the DNA methylation patterns in the promoter region of MIEN1. Bisulfite pyrosequencing demonstrates the MIEN1 promoter contains a short interspersed nuclear Alu element (SINE Alu) repeat sequence. Validation of methylation inhibition on MIEN1 was performed using nucleoside analogs and non-nucleoside inhibitors and resulted in an increase in both MIEN1 RNA and protein in normal cells. MIEN1 mRNA and protein increases upon inhibition of individual DNA methyltransferases using RNA interference technologies. Furthermore, dual luciferase reporter assays, in silico analysis, and chromatin immunoprecipitation assays identified a sequence upstream of the transcription start site that has a site for binding of the USF transcription factors. These results suggest the MIEN1 promoter has a SINE Alu region that is hypermethylated in normal cells leading to repression of the gene. In cancer, the hypomethylation of a part of this repeat, in addition to the binding of USF, results in MIEN1 expression.
Collapse
|
16
|
Yang X, Gao L, Zhang S. Comparative pan-cancer DNA methylation analysis reveals cancer common and specific patterns. Brief Bioinform 2017; 18:761-773. [PMID: 27436122 DOI: 10.1093/bib/bbw063] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 01/05/2023] Open
Abstract
Abnormal DNA methylation is an important epigenetic regulator involving tumorigenesis. Deciphering cancer common and specific DNA methylation patterns is essential for us to understand the mechanisms of tumor development. The Cancer Genome Atlas (TCGA) project provides a large number of samples of different cancers that enable a pan-cancer study of DNA methylation possible. Here we investigate cancer common and specific DNA methylation patterns among 5480 DNA methylation profiles of 15 cancer types from TCGA. We first define differentially methylated CpG sites (DMCs) in each cancer and then identify 5450 hyper- and 4433 hypomethylated pan-cancer DMCs (PDMCs). Intriguingly, three adjacent hypermethylated PDMC constitute an enhancer region, which potentially regulates two tumor suppressor genes BVES and PRDM1 negatively. Moreover, we identify six distinct motif clusters, which are enriched in hyper- or hypomethylated PDMCs and are associated with several well-known cancer hallmarks. We also observe that PDMCs relate to distinct transcriptional groups. Additionally, 55 hypermethylated and 7 hypomethylated PDMCs are significantly associated with patient survival. Lastly, we find that cancer-specific DMCs are enriched in known cancer genes and cell-type-specific super-enhancers. In summary, this study provides a comprehensive investigation and reveals meaningful cancer common and specific DNA methylation patterns.
Collapse
|
17
|
Pugongchai A, Bychkov A, Sampatanukul P. Promoter hypermethylation of SOX11 correlates with adverse clinicopathological features of human prostate cancer. Int J Exp Pathol 2017; 98:341-346. [PMID: 29315911 PMCID: PMC5826943 DOI: 10.1111/iep.12257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/04/2017] [Indexed: 12/16/2022] Open
Abstract
Currently available tools for early diagnosis and prognosis of prostate cancer lack sufficient accuracy. There is a need to identify novel biomarkers for this common malignancy. SOX family genes play an important role in embryogenesis and are also implicated in various cancers. SOX11 has been recently recognized as a potential tumour suppressor that is downregulated in prostate cancer. We hypothesized that hypermethylation may be responsible for SOX11 silencing in human prostate cancer. The aim of the study was to investigate SOX11 promoter methylation in prostate adenocarcinoma by comparing it with benign prostatic hyperplasia (BPH). A total of 143 human prostate tissue samples, 62 from patients with prostate cancer and 81 from patients with BPH were examined by methylation-specific PCR. Associations between SOX11 promoter methylation and clinicopathological parameters were assessed by univariate statistics. Detection rates of SOX11 promoter methylation were 80.6% and 35.8% in prostate cancer and BPH respectively (P < 0.001). SOX11 hypermethylation was associated with adverse clinicopathological characteristics of prostate cancer, including higher PSA level (P < 0.01), Gleason score ≥ 7 (P = 0.03) and perineural invasion (P = 0.03). SOX11 methylation was positively correlated with the PSA level (P = 0.001). Our data indicated that SOX11 can be a promising methylation marker candidate for differential diagnosis and risk stratification for prostate cancer.
Collapse
Affiliation(s)
- Apiwat Pugongchai
- Department of PathologyFaculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Andrey Bychkov
- Department of PathologyFaculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Pichet Sampatanukul
- Department of PathologyFaculty of MedicineChulalongkorn UniversityBangkokThailand
| |
Collapse
|
18
|
Rubicz R, Zhao S, Wright JL, Coleman I, Grasso C, Geybels MS, Leonardson A, Kolb S, April C, Bibikova M, Troyer D, Lance R, Lin DW, Ostrander EA, Nelson PS, Fan JB, Feng Z, Stanford JL. Gene expression panel predicts metastatic-lethal prostate cancer outcomes in men diagnosed with clinically localized prostate cancer. Mol Oncol 2016; 11:140-150. [PMID: 28145099 PMCID: PMC5510189 DOI: 10.1002/1878-0261.12014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/30/2016] [Indexed: 11/24/2022] Open
Abstract
Prognostic biomarkers are needed to distinguish patients with clinically localized prostate cancer (PCa) who are at high risk of metastatic progression. The tumor transcriptome may reveal its aggressiveness potential and have utility for predicting adverse patient outcomes. Genomewide gene expression levels were measured in primary tumor samples of 383 patients in a population‐based discovery cohort, and from an independent clinical validation dataset of 78 patients. Patients were followed for ≥ 5 years after radical prostatectomy to ascertain outcomes. Area under the receiver‐operating characteristic curve (AUC), partial AUC (pAUC, 95% specificity), and P‐value criteria were used to detect and validate the differentially expressed transcripts. Twenty‐three differentially expressed transcripts in patients with metastatic‐lethal compared with nonrecurrent PCa were validated (P < 0.05; false discovery rate < 0.20) in the independent dataset. The addition of each validated transcript to a model with Gleason score showed that 17 transcripts significantly improved the AUC (range: 0.83–0.88; all P‐values < 0.05). These differentially expressed mRNAs represent genes with diverse cellular functions related to tumor aggressiveness. This study validated 23 gene transcripts for predicting metastatic‐lethal PCa in patients surgically treated for clinically localized disease. Several of these mRNA biomarkers have clinical potential for identifying the subset of PCa patients with more aggressive tumors who would benefit from closer monitoring and adjuvant therapy.
Collapse
Affiliation(s)
- Rohina Rubicz
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Jonathan L Wright
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Catherine Grasso
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Milan S Geybels
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - Amy Leonardson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Suzanne Kolb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | - Dean Troyer
- Departments of Pathology and Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Raymond Lance
- Department of Urology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Daniel W Lin
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Ziding Feng
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Yao L, Ren S, Zhang M, Du F, Zhu Y, Yu H, Zhang C, Li X, Yang C, Liu H, Wang D, Meng H, Chang S, Han X, Sun Y, Sun Y. Identification of specific DNA methylation sites on the Y-chromosome as biomarker in prostate cancer. Oncotarget 2016; 6:40611-21. [PMID: 26485765 PMCID: PMC4747356 DOI: 10.18632/oncotarget.6141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/26/2015] [Indexed: 12/31/2022] Open
Abstract
As a diagnostic biomarker, prostate special antigen (PSA) tests always generate false positive results and lead to unnecessary and/or repeat biopsies. Therefore, there is an urgent need for developing more sensitive, specific diagnostic biomarkers. We epigenotyped methylated sites in cancer tissues and adjacent normal tissues from 66 patients. In comparison with normal adjacent tissues, we observed that there were 6 aberrant methylation sites in prostate cancer tissues on the Y-chromosome. We further performed pyrosequencing using urine of PCa patients and we identified one methylated site (cg05163709) as a potential biomarker. We evaluated the predictive capacity of the aberrant methylated sites using the area under receiver operating characteristic (ROC) curve (AUC). The ROC analysis showed a higher AUC for cg05163709 (0.915) than prostate-specific antigen (PSA, 0.769). These results indicated that aberrant DNA methylation of cg05163709 on the Y-chromosome could serve as a potential diagnostic biomarker with high sensitivity and specificity.
Collapse
Affiliation(s)
- Lushuai Yao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Minjie Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fengxia Du
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yasheng Zhu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hui Yu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenyu Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Caiyun Yang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Huixian Liu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Dong Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hao Meng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Chang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Han
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yinghao Sun
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yingli Sun
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
GSTP1 Methylation and Protein Expression in Prostate Cancer: Diagnostic Implications. DISEASE MARKERS 2016; 2016:4358292. [PMID: 27594734 PMCID: PMC4995330 DOI: 10.1155/2016/4358292] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/21/2016] [Accepted: 07/03/2016] [Indexed: 01/06/2023]
Abstract
GSTP1 belongs to the GSTs family, a group of enzymes involved in detoxification of exogenous substances and it also plays an important role in cell cycle regulation. Its dysregulation correlates with a large variety of tumors, in particular with prostate cancer. We investigated GSTP1 methylation status with methylation specific PCR (MS-PCR) in prostate cancer (PCa) and in benign tissue of 56 prostatectomies. We also performed immunohistochemistry (IHC) so as to correlate gene methylation with gene silencing. GSTP1 appears methylated in PCa and not in healthy tissue; IHC confirmed that methylation leads to protein underexpression (p < 0.001). GSTP1 is highly expressed in basal cell layer and luminal cells in benign glands while in prostatic intraepithelial neoplasia (PIN) it stains only basal cell layer, whereas PCa glands are completely negative. We demonstrated that methylation leads to underexpression of GSTP1. The progressive loss of GSTP1 expression from healthy glands to PIN and to PCa glands underlines its involvement in early carcinogenesis.
Collapse
|
21
|
Spans L, Van den Broeck T, Smeets E, Prekovic S, Thienpont B, Lambrechts D, Karnes RJ, Erho N, Alshalalfa M, Davicioni E, Helsen C, Gevaert T, Tosco L, Haustermans K, Lerut E, Joniau S, Claessens F. Genomic and epigenomic analysis of high-risk prostate cancer reveals changes in hydroxymethylation and TET1. Oncotarget 2016; 7:24326-38. [PMID: 27014907 PMCID: PMC5029704 DOI: 10.18632/oncotarget.8220] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/04/2016] [Indexed: 11/25/2022] Open
Abstract
The clinical heterogeneity of prostate cancer (PCa) makes it difficult to identify those patients that could benefit from more aggressive treatments. As a contribution to a better understanding of the genomic changes in the primary tumor that are associated with the development of high-risk disease, we performed exome sequencing and copy number determination of a clinically homogeneous cohort of 47 high-risk PCas. We confirmed recurrent mutations in SPOP, PTEN and TP53 among the 850 point mutations we detected. In seven cases, we discovered genomic aberrations in the TET1 (Ten-Eleven Translocation 1) gene which encodes a DNA hydroxymethylase than can modify methylated cytosines in genomic DNA and thus is linked with gene expression changes. TET1 protein levels were reduced in tumor versus non-tumor prostate tissue in 39 of 40 cases. The clinical relevance of changes in TET1 levels was demonstrated in an independent PCa cohort, in which low TET1 mRNA levels were significantly associated with worse metastases-free survival. We also demonstrate a strong reduction in hydroxymethylated DNA in tumor tissue in 27 of 41 cases. Furthermore, we report the first exploratory (h)MeDIP-Seq analyses of eight high-risk PCa samples. This reveals a large heterogeneity in hydroxymethylation changes in tumor versus non-tumor genomes which can be linked with cell polarity.
Collapse
Affiliation(s)
- Lien Spans
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
- Current address: Laboratory for Genetics of Malignant Disorders, Department of Human Genetics, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Thomas Van den Broeck
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
- Department of Urology, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Elien Smeets
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Stefan Prekovic
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Bernard Thienpont
- Vesalius Research Center, VIB, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Oncology, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Oncology, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | | | - Nicholas Erho
- Research and Development, GenomeDx Biosciences, Inc., Vancouver, BC, Canada
| | | | - Elai Davicioni
- Research and Development, GenomeDx Biosciences, Inc., Vancouver, BC, Canada
| | - Christine Helsen
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Thomas Gevaert
- Organ Systems, Department of Development and Regeneration, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Lorenzo Tosco
- Department of Urology, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Karin Haustermans
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Evelyne Lerut
- Translational Cell & Tissue Research, Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium
- PEARL Consortium
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| |
Collapse
|
22
|
Wu Y, Davison J, Qu X, Morrissey C, Storer B, Brown L, Vessella R, Nelson P, Fang M. Methylation profiling identified novel differentially methylated markers including OPCML and FLRT2 in prostate cancer. Epigenetics 2016; 11:247-58. [PMID: 26890304 DOI: 10.1080/15592294.2016.1148867] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
To develop new methods to distinguish indolent from aggressive prostate cancers (PCa), we utilized comprehensive high-throughput array-based relative methylation (CHARM) assay to identify differentially methylated regions (DMRs) throughout the genome, including both CpG island (CGI) and non-CGI regions in PCa patients based on Gleason grade. Initially, 26 samples, including 8 each of low [Gleason score (GS) 6] and high (GS ≥7) grade PCa samples and 10 matched normal prostate tissues, were analyzed as a discovery cohort. We identified 3,567 DMRs between normal and cancer tissues, and 913 DMRs distinguishing low from high-grade cancers. Most of these DMRs were located at CGI shores. The top 5 candidate DMRs from the low vs. high Gleason comparison, including OPCML, ELAVL2, EXT1, IRX5, and FLRT2, were validated by pyrosequencing using the discovery cohort. OPCML and FLRT2 were further validated in an independent cohort consisting of 20 low-Gleason and 33 high-Gleason tissues. We then compared patients with biochemical recurrence (n=70) vs. those without (n=86) in a third cohort, and they showed no difference in methylation at these DMR loci. When GS 3+4 cases and GS 4+3 cases were compared, OPCML-DMR methylation showed a trend of lower methylation in the recurrence group (n=30) than in the no-recurrence (n=52) group. We conclude that whole-genome methylation profiling with CHARM revealed distinct patterns of differential DNA methylation between normal prostate and PCa tissues, as well as between different risk groups of PCa as defined by Gleason scores. A panel of selected DMRs may serve as novel surrogate biomarkers for Gleason score in PCa.
Collapse
Affiliation(s)
- Yu Wu
- a Fred Hutchinson Cancer Research Center , Seattle , WA
| | - Jerry Davison
- a Fred Hutchinson Cancer Research Center , Seattle , WA
| | - Xiaoyu Qu
- a Fred Hutchinson Cancer Research Center , Seattle , WA
| | | | - Barry Storer
- a Fred Hutchinson Cancer Research Center , Seattle , WA
| | | | - Robert Vessella
- b University of Washington , Seattle , WA.,c Puget Sound VA Health Care System , Seattle , WA
| | - Peter Nelson
- a Fred Hutchinson Cancer Research Center , Seattle , WA.,b University of Washington , Seattle , WA
| | - Min Fang
- a Fred Hutchinson Cancer Research Center , Seattle , WA.,b University of Washington , Seattle , WA
| |
Collapse
|
23
|
Haldrup C, Lynnerup AS, Storebjerg TM, Vang S, Wild P, Visakorpi T, Arsov C, Schulz WA, Lindberg J, Grönberg H, Egevad L, Borre M, Ørntoft TF, Høyer S, Sørensen KD. Large-scale evaluation of SLC18A2 in prostate cancer reveals diagnostic and prognostic biomarker potential at three molecular levels. Mol Oncol 2016; 10:825-37. [PMID: 26905753 DOI: 10.1016/j.molonc.2016.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/23/2015] [Accepted: 02/01/2016] [Indexed: 12/18/2022] Open
Abstract
Limitations of current diagnostic and prognostic tools for prostate cancer (PC) have led to over-diagnosis and over-treatment. Here, we investigate the biomarker potential of the SLC18A2 (VMAT2) gene for PC at three molecular levels. Thus, SLC18A2 promoter methylation was analyzed in 767 malignant and 78 benign radical prostatectomy (RP) samples using methylation-specific qPCR and Illumina 450K methylation microarray data. SLC18A2 transcript levels were assessed in 412 malignant and 45 benign RP samples using RNAseq data. SLC18A2 protein was evaluated by immunohistochemistry in 502 malignant and 305 benign RP samples. Cancer-specificity of molecular changes was tested using Mann-Whitney U tests and/or receiver operating characteristic (ROC) analyses. Log rank, uni- and multivariate Cox regression tests were used for survival analyses. We found that SLC18A2 promoter hypermethylation was highly cancer-specific (area under the curve (AUC): 0.923-0.976) and associated with biochemical recurrence (BCR) after RP in univariate analyses. SLC18A2 transcript levels were reduced in PC and had independent prognostic value for BCR after RP (multivariate HR 0.13, P < 0.05). Likewise, SLC18A2 protein was down-regulated in PC (AUC 0.898) and had independent prognostic value for BCR (multivariate HR 0.51, P < 0.05). Reduced SLC18A2 protein expression was also associated with poor overall survival in univariate analysis (HR 0.29, P < 0.05). Our results highlight SLC18A2 as a new promising methylation marker candidate for PC diagnosis. Furthermore, SLC18A2 expression (RNA and protein) showed promising prognostic potential beyond routine clinicopathological variables. Thus, novel SLC18A2-based molecular tests could have useful future applications for PC detection and identification of high-risk patients.
Collapse
Affiliation(s)
- Christa Haldrup
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Sofie Lynnerup
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Tine Maj Storebjerg
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Vang
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Wild
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Tapio Visakorpi
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, and Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Christian Arsov
- Department of Urology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Lars Egevad
- Department of Oncolocy and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Michael Borre
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Søren Høyer
- Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
24
|
Reis IM, Ramachandran K, Speer C, Gordian E, Singal R. Serum GADD45a methylation is a useful biomarker to distinguish benign vs malignant prostate disease. Br J Cancer 2015; 113:460-8. [PMID: 26171936 PMCID: PMC4522641 DOI: 10.1038/bjc.2015.240] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/22/2015] [Accepted: 06/09/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prostate-specific antigen (PSA) screening for prostate cancer results in a large number of unnecessary prostate biopsies. There is a need for specific molecular markers that can be used in combination with PSA to improve the specificity of PSA screening. We examined GADD45a methylation in blood DNA as a molecular marker for prostate cancer diagnosis. METHODS The study included 82 men, with PSA levels >4 ng ml(-1) and/or abnormal digital rectal exam, who underwent prostate biopsy. We compared GADD45a methylation in DNA from serum and buffy coat in 44 patients (22 prostate cancer and 22 benign). GADD45a methylation in serum DNA was examined in 82 patients (34 cancer and 48 benign). RESULTS There was no significant difference in buffy coat GADD45a methylation between cancer and benign patients. Serum GADD45a methylation was significantly higher in cancer than in benign patients. Classification and regression tree predictive model for prostate cancer including risk groups defined by PSA, free circulating DNA (fcDNA) level and GADD45a methylation yielded specificity of 87.5%, sensitivity of 94.1% and receiver operator characteristic curve area of 0.937. CONCLUSIONS Serum GADD45a methylation in combination with PSA and fcDNA level was useful in distinguishing benign from prostate cancer patients.
Collapse
Affiliation(s)
- I M Reis
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - K Ramachandran
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - C Speer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - E Gordian
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - R Singal
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Hematology/Oncology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami VA Medical Center, Miami, FL, USA
- E-mail:
| |
Collapse
|
25
|
Kristensen H, Haldrup C, Strand S, Mundbjerg K, Mortensen MM, Thorsen K, Ostenfeld MS, Wild PJ, Arsov C, Goering W, Visakorpi T, Egevad L, Lindberg J, Grönberg H, Høyer S, Borre M, Ørntoft TF, Sørensen KD. Hypermethylation of the GABRE~miR-452~miR-224 promoter in prostate cancer predicts biochemical recurrence after radical prostatectomy. Clin Cancer Res 2014; 20:2169-81. [PMID: 24737792 DOI: 10.1158/1078-0432.ccr-13-2642] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Available tools for prostate cancer diagnosis and prognosis are suboptimal and novel biomarkers are urgently needed. Here, we investigated the regulation and biomarker potential of the GABRE∼miR-452∼miR-224 genomic locus. EXPERIMENTAL DESIGN GABRE/miR-452/miR-224 transcriptional expression was quantified in 80 nonmalignant and 281 prostate cancer tissue samples. GABRE∼miR-452∼miR-224 promoter methylation was determined by methylation-specific qPCR (MethyLight) in 35 nonmalignant, 293 prostate cancer [radical prostatectomy (RP) cohort 1] and 198 prostate cancer tissue samples (RP cohort 2). Diagnostic/prognostic biomarker potential of GABRE∼miR-452∼miR-224 methylation was evaluated by ROC, Kaplan-Meier, uni- and multivariate Cox regression analyses. Functional roles of miR-224 and miR-452 were investigated in PC3 and DU145 cells by viability, migration, and invasion assays and gene-set enrichment analysis (GSEA) of posttransfection transcriptional profiling data. RESULTS GABRE∼miR-452∼miR-224 was significantly downregulated in prostate cancer compared with nonmalignant prostate tissue and had highly cancer-specific aberrant promoter hypermethylation (AUC = 0.98). Functional studies and GSEA suggested that miR-224 and miR-452 inhibit proliferation, migration, and invasion of PC3 and DU145 cells by direct/indirect regulation of pathways related to the cell cycle and cellular adhesion and motility. Finally, in uni- and multivariate analyses, high GABRE∼miR-452∼miR-224 promoter methylation was significantly associated with biochemical recurrence in RP cohort 1, which was successfully validated in RP cohort 2. CONCLUSION The GABRE∼miR-452∼miR-224 locus is downregulated and hypermethylated in prostate cancer and is a new promising epigenetic candidate biomarker for prostate cancer diagnosis and prognosis. Tumor-suppressive functions of the intronic miR-224 and miR-452 were demonstrated in two prostate cancer cell lines, suggesting that epigenetic silencing of GABRE∼miR-452∼miR-224 may be selected for in prostate cancer.
Collapse
Affiliation(s)
- Helle Kristensen
- Authors' Affiliations: Departments of Molecular Medicine and Urology and Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark; Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland; Department of Urology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Institute of Biomedical Technology and BioMediTech, University of Tampere and Tampere University Hospital, Tampere, Finland; Departments of Oncology and Pathology and Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Niu WB, Gui SL, Lin YL, Fu XL, Ma JG, Li WP. Promoter methylation of protocadherin8 is an independent prognostic factor for biochemical recurrence of early-stage prostate cancer. Med Sci Monit 2014; 20:2584-9. [PMID: 25486497 PMCID: PMC4266258 DOI: 10.12659/msm.893083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/28/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Protocadherin8 has been demonstrated to play critical roles in initiation and progression of several human cancers. It is frequently inactivated by promoter methylation in cancers and may be used as a potential biomarker. However, the methylation status of protocadherin8 and its clinical significance in prostate cancer remains largely unknown. The purpose of this study was to evaluate the clinical significance of protocadherin8 methylation in early-stage prostate cancer. MATERIAL AND METHODS The promoter methylation status of protocadherin8 in 162 prostate cancer tissues and 47 normal prostate tissues was examined using methylation-specific PCR (MSP). Subsequently, the relationships between protocadherin8 methylation and clinicopathological features of prostate cancer patients and biochemical recurrence-free survival of patients were analyzed. RESULTS We found that protocadherin8 methylation occurred frequently in prostate cancer tissues but not in normal prostate tissues. Moreover, protocadherin8 methylation was significantly associated with advanced pathologic stage, higher level of preoperative prostate specific antigen (PSA), higher Gleason score, positive lymph node metastasis, and biochemical recurrence. In addition, patients with protocadherin8 methylated have shorter biochemical recurrence-free survival time than patients without. Multivariate Cox regression analysis revealed that protocadherin8 methylation was an independent predictor of biochemical recurrence-free survival in prostate cancer patients. CONCLUSIONS Promoter methylation of protocadherin8 is a frequent event in prostate cancer, and might be used as an independent prognostic factor for biochemical recurrence-free survival in patients with prostate cancer.
Collapse
Affiliation(s)
- Wen-Bin Niu
- Department of Urology, First Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Shi-Liang Gui
- Department of Urology, First Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Ying-Li Lin
- Department of Urology, Affiliated Xuzhou Hospital of Jiangsu University (Xuzhou Cancer Hospital), Xuzhou, Jiangsu, China
| | - Xing-Li Fu
- Health Science Center, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jian-Guo Ma
- Department of Urology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wen-Ping Li
- Department of Urology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
27
|
Heterogeneity of DNA methylation in multifocal prostate cancer. Virchows Arch 2014; 466:53-9. [DOI: 10.1007/s00428-014-1678-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/17/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
|
28
|
Prognostic DNA methylation markers for prostate cancer. Int J Mol Sci 2014; 15:16544-76. [PMID: 25238417 PMCID: PMC4200823 DOI: 10.3390/ijms150916544] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer (PC) is the most commonly diagnosed neoplasm and the third most common cause of cancer-related death amongst men in the Western world. PC is a clinically highly heterogeneous disease, and distinction between aggressive and indolent disease is a major challenge for the management of PC. Currently, no biomarkers or prognostic tools are able to accurately predict tumor progression at the time of diagnosis. Thus, improved biomarkers for PC prognosis are urgently needed. This review focuses on the prognostic potential of DNA methylation biomarkers for PC. Epigenetic changes are hallmarks of PC and associated with malignant initiation as well as tumor progression. Moreover, DNA methylation is the most frequently studied epigenetic alteration in PC, and the prognostic potential of DNA methylation markers for PC has been demonstrated in multiple studies. The most promising methylation marker candidates identified so far include PITX2, C1orf114 (CCDC181) and the GABRE~miR-452~miR-224 locus, in addition to the three-gene signature AOX1/C1orf114/HAPLN3. Several other biomarker candidates have also been investigated, but with less stringent clinical validation and/or conflicting evidence regarding their possible prognostic value available at this time. Here, we review the current evidence for the prognostic potential of DNA methylation markers in PC.
Collapse
|
29
|
Tang J, Xiong Y, Zhou HH, Chen XP. DNA methylation and personalized medicine. J Clin Pharm Ther 2014; 39:621-7. [PMID: 25230364 DOI: 10.1111/jcpt.12206] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/17/2014] [Indexed: 12/12/2022]
Affiliation(s)
- J. Tang
- Department of Clinical Pharmacology; Xiangya Hospital; Central South University; Changsha China
- Pharmacogenetics Research Institute; Institute of Clinical Pharmacology; Hunan Key laboratory of Pharmacogenetics; Central South University; Changsha China
| | - Y. Xiong
- Department of Clinical Pharmacology; Xiangya Hospital; Central South University; Changsha China
- Pharmacogenetics Research Institute; Institute of Clinical Pharmacology; Hunan Key laboratory of Pharmacogenetics; Central South University; Changsha China
| | - H.-H. Zhou
- Department of Clinical Pharmacology; Xiangya Hospital; Central South University; Changsha China
- Pharmacogenetics Research Institute; Institute of Clinical Pharmacology; Hunan Key laboratory of Pharmacogenetics; Central South University; Changsha China
| | - X.-P. Chen
- Department of Clinical Pharmacology; Xiangya Hospital; Central South University; Changsha China
- Pharmacogenetics Research Institute; Institute of Clinical Pharmacology; Hunan Key laboratory of Pharmacogenetics; Central South University; Changsha China
| |
Collapse
|
30
|
Wang L, Xie PG, Lin YL, Ma JG, Li WP. Aberrant methylation of PCDH10 predicts worse biochemical recurrence-free survival in patients with prostate cancer after radical prostatectomy. Med Sci Monit 2014; 20:1363-8. [PMID: 25086586 PMCID: PMC4136935 DOI: 10.12659/msm.891241] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Prostate cancer is a common malignancy in men, and inevitably some patients experience biochemical recurrence after radical prostatectomy. To date, there are no reliable predictors for prostate cancer recurrence, and novel predictors are urgently needed. PCDH10 (protocadherin-10) is a novel tumor suppressor gene, which is down-regulated by promoter methylation in prostate cancer. The aim of this study was to evaluate the feasibility of using PCDH10 methylation to predict the biochemical recurrence (BCR) of prostate cancer after radical prostatectomy. Material/Methods Fresh tissue samples were obtained from 151 patients with primary prostate cancer, and from 34 patients with benign prostatic hyperplasia (BPH) as control. The methylation status of PCDH10 in prostate cancer tissues and controls were examined using methylation-specific PCR (MSP), and then associated with clinicopathological features and BCR-free survival of patients with prostate cancer. Results We found that PCDH10 methylation was detected in 79 (52.3%) patients with prostate cancer, but no methylation was found in controls (P<0.0001). Moreover, PCDH10 methylation was significantly associated with higher preoperative prostate-specific antigen (PSA) level (P <0.0001), higher Gleason Score (P<0.0001), advanced clinical stage (P=0.0002), lymph node metastasis (P=0.0389), angiolymphatic invasion (P=0.0303), and biochemical recurrence (P=0.0068). Moreover, PCDH10 methylation was associated with poor BCR-free survival (P<0.0001), and may be used as an independent predictor of BCR-free survival (P=0.0046). Conclusions Our results indicate that PCDH10 methylation in prostate cancer tissue is an independent prognostic biomarker of worse BCR-free survival of patients with prostate cancer after radical prostatectomy.
Collapse
Affiliation(s)
- Li Wang
- Department of Urology, Affiliated Hospital, Hebei University of Engineering, Handan, Chile
| | - Pei-Gen Xie
- Department of Spine Surgery, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (mainland)
| | - Ying-Li Lin
- Department of Urology, Xuzhou Tumor Hospital (Affiliated Xuzhou Hospital of Jiangsu University), Xuzhou, China (mainland)
| | - Jian-Guo Ma
- Department of Urology, Third Hospital, Hebei Medical University, Shijiazhuang, China (mainland)
| | - Wen-Ping Li
- Department of Urology, Third Hospital, Hebei Medical University, Shijiazhuang, China (mainland)
| |
Collapse
|
31
|
Wang L, Lin YL, Li B, Wang YZ, Li WP, Ma JG. Aberrant promoter methylation of the cadherin 13 gene in serum and its relationship with clinicopathological features of prostate cancer. J Int Med Res 2014; 42:1085-92. [PMID: 25015764 DOI: 10.1177/0300060514540631] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the clinical significance of cadherin 13 (CDH13) gene promoter methylation in the serum of patients with prostate cancer. METHODS This prospective study examined the methylation status of CDH13 in serum samples obtained from patients with primary prostate cancer and age-matched control subjects, using methylation-specific polymerase chain reaction. Associations between methylation status of CDH13 and various clinicopathological features and patient survival were evaluated. RESULTS A total of 98 patients with prostate cancer and 47 control subjects were enrolled in the study. CDH13 promoter methylation was detected in 44 out of 98 (44.9%) patients with prostate cancer; no methylation was found in control subjects. Methylation of CDH13 was significantly associated with an increased Gleason score, an advanced tumour stage, and a high prostate-specific antigen level. CDH13 methylation was associated with a worse survival outcome and a relative risk of death of 6.132 (95% confidence interval: 3.160, 12.187). CONCLUSIONS Promoter methylation of CDH13 occurred frequently in the serum of patients with prostate cancer, was associated with an increased risk of death, and may become a useful independent predictor of a poor prognosis.
Collapse
Affiliation(s)
- Li Wang
- Department of Urology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei Province, China
| | - Ying-Li Lin
- Department of Urology, Xuzhou Tumour Hospital, Xuzhou, Jiangsu Province, China
| | - Bo Li
- Department of Urology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei Province, China
| | - Yu-Zhong Wang
- Department of Urology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei Province, China
| | - Wen-Ping Li
- Department of Urology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jian-Guo Ma
- Department of Urology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
32
|
DNA methylation status is more reliable than gene expression at detecting cancer in prostate biopsy. Br J Cancer 2014; 111:781-9. [PMID: 24937670 PMCID: PMC4134497 DOI: 10.1038/bjc.2014.337] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/24/2014] [Accepted: 05/20/2014] [Indexed: 01/06/2023] Open
Abstract
Background: We analysed critically the potential usefulness of RNA- and DNA-based biomarkers in supporting conventional histological diagnostic tests for prostate carcinoma (PCa) detection. Methods: Microarray profiling of gene expression and DNA methylation was performed on 16 benign prostatic hyperplasia (BPH) and 32 cancerous and non-cancerous prostate samples extracted by radical prostatectomy. The predictive value of the selected biomarkers was validated by qPCR-based methods using tissue samples extracted from the 58 prostates and, separately, using 227 prostate core biopsies. Results: HOXC6, AMACR and PCA3 expression showed the best discrimination between PCa and BPH. All three genes were previously reported as the most promising mRNA-based markers for distinguishing cancerous lesions from benign prostate lesions; however, none were sufficiently sensitive and specific to meet the criteria for a PCa diagnostic biomarker. By contrast, DNA methylation levels of the APC, TACC2, RARB, DGKZ and HES5 promoter regions achieved high discriminating sensitivity and specificity, with area under the curve (AUCs) reaching 0.95−1.0. Only a small overlap was detected between the DNA methylation levels of PCa-positive and PCa-negative needle biopsies, with AUCs ranging between 0.854 and 0.899. Conclusions: DNA methylation-based biomarkers reflect the prostate malignancy and might be useful in supporting clinical decisions for suspected PCa following an initial negative prostate biopsy.
Collapse
|
33
|
Naldi I, Taranta M, Gherardini L, Pelosi G, Viglione F, Grimaldi S, Pani L, Cinti C. Novel epigenetic target therapy for prostate cancer: a preclinical study. PLoS One 2014; 9:e98101. [PMID: 24851905 PMCID: PMC4031137 DOI: 10.1371/journal.pone.0098101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/28/2014] [Indexed: 01/06/2023] Open
Abstract
Epigenetic events are critical contributors to the pathogenesis of cancer, and targeting epigenetic mechanisms represents a novel strategy in anticancer therapy. Classic demethylating agents, such as 5-Aza-2′-deoxycytidine (Decitabine), hold the potential for reprograming somatic cancer cells demonstrating high therapeutic efficacy in haematological malignancies. On the other hand, epigenetic treatment of solid tumours often gives rise to undesired cytotoxic side effects. Appropriate delivery systems able to enrich Decitabine at the site of action and improve its bioavailability would reduce the incidence of toxicity on healthy tissues. In this work we provide preclinical evidences of a safe, versatile and efficient targeted epigenetic therapy to treat hormone sensitive (LNCap) and hormone refractory (DU145) prostate cancers. A novel Decitabine formulation, based on the use of engineered erythrocyte (Erythro-Magneto-Hemagglutinin Virosomes, EMHVs) drug delivery system (DDS) carrying this drug, has been refined. Inside the EMHVs, the drug was shielded from the environment and phosphorylated in its active form. The novel magnetic EMHV DDS, endowed with fusogenic protein, improved the stability of the carried drug and exhibited a high efficiency in confining its delivery at the site of action in vivo by applying an external static magnetic field. Here we show that Decitabine loaded into EMHVs induces a significant tumour mass reduction in prostate cancer xenograft models at a concentration, which is seven hundred times lower than the therapeutic dose, suggesting an improved pharmacokinetics/pharmacodynamics of drug. These results are relevant for and discussed in light of developing personalised autologous therapies and innovative clinical approach for the treatment of solid tumours.
Collapse
Affiliation(s)
- Ilaria Naldi
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Experimental Oncology Unit, Siena, Italy
| | - Monia Taranta
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Experimental Oncology Unit, Siena, Italy
| | - Lisa Gherardini
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Experimental Oncology Unit, Siena, Italy
| | - Gualtiero Pelosi
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Federica Viglione
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Settimio Grimaldi
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Luca Pani
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
| | - Caterina Cinti
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Experimental Oncology Unit, Siena, Italy
- * E-mail:
| |
Collapse
|
34
|
Methylation markers for prostate cancer prognosis: a systematic review. Cancer Causes Control 2014; 24:1615-41. [PMID: 23797237 DOI: 10.1007/s10552-013-0249-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/07/2013] [Indexed: 12/31/2022]
Abstract
PURPOSE We conducted a systematic review to summarize current evidence on the prognostic utility of DNA methylation markers in prostate cancer and ascertain knowledge gaps to inform future research. METHODS We identified relevant studies using combined key search against PubMed database. Inclusion criteria were studies of human subjects that examined the association between DNA methylation markers and prostate cancer disease outcomes. The methodological quality of each study was systematically evaluated. Findings were qualitatively summarized. Due to heterogeneity and concerns of internal validity, no meta-analysis was performed. RESULTS Twenty studies were reviewed; sample size ranged from 35 to 605 men in the prognostic analyses. Sixteen studies examined methylation markers in prostate cancer tissue and four examined circulating DNA methylation markers. Of all genes reviewed, paired-like homeodomain transcription factor 2 (PITX2) methylation was examined in two more rigorously designed studies and was found to be associated with biochemical recurrence. Common limitations in current literature included small sample sizes,lack of adequate adjustment for established prognostic factors, and poor reporting quality. CONCLUSION Evidence on the prognostic utility of methylation markers in prostate cancer is inconclusive. Future research should ascertain large samples with adequate follow-up and include patients of racial/ethnic minority and those treated with modalities other than prostatectomy(e.g., using prostate cancer diagnostic biopsy as tissue source).
Collapse
|
35
|
Gorlov IP, Yang JY, Byun J, Logothetis C, Gorlova OY, Do KA, Amos C. How to get the most from microarray data: advice from reverse genomics. BMC Genomics 2014; 15:223. [PMID: 24656147 PMCID: PMC3997969 DOI: 10.1186/1471-2164-15-223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/10/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Whole-genome profiling of gene expression is a powerful tool for identifying cancer-associated genes. Genes differentially expressed between normal and tumorous tissues are usually considered to be cancer associated. We recently demonstrated that the analysis of interindividual variation in gene expression can be useful for identifying cancer associated genes. The goal of this study was to identify the best microarray data-derived predictor of known cancer associated genes. RESULTS We found that the traditional approach of identifying cancer genes--identifying differentially expressed genes--is not very efficient. The analysis of interindividual variation of gene expression in tumor samples identifies cancer-associated genes more effectively. The results were consistent across 4 major types of cancer: breast, colorectal, lung, and prostate. We used recently reported cancer-associated genes (2011-2012) for validation and found that novel cancer-associated genes can be best identified by elevated variance of the gene expression in tumor samples. CONCLUSIONS The observation that the high interindividual variation of gene expression in tumor tissues is the best predictor of cancer-associated genes is likely a result of tumor heterogeneity on gene level. Computer simulation demonstrates that in the case of heterogeneity, an assessment of variance in tumors provides a better identification of cancer genes than does the comparison of the expression in normal and tumor tissues. Our results thus challenge the current paradigm that comparing the mean expression between normal and tumorous tissues is the best approach to identifying cancer-associated genes; we found that the high interindividual variation in expression is a better approach, and that using variation would improve our chances of identifying cancer-associated genes.
Collapse
Affiliation(s)
- Ivan P Gorlov
- Department of Genitourinary Medical Oncology, Unit 1374, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030-3721, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Batra JS, Girdhani S, Hlatky L. A Quest to Identify Prostate Cancer Circulating Biomarkers with a Bench-to-Bedside Potential. J Biomark 2014; 2014:321680. [PMID: 26317031 PMCID: PMC4437363 DOI: 10.1155/2014/321680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 02/01/2023] Open
Abstract
Prostate cancer (PCA) is a major health concern in current times. Ever since prostate specific antigen (PSA) was introduced in clinical practice almost three decades ago, the diagnosis and management of PCA have been revolutionized. With time, concerns arose as to the inherent shortcomings of this biomarker and alternatives were actively sought. Over the past decade new PCA biomarkers have been identified in tissue, blood, urine, and other body fluids that offer improved specificity and supplement our knowledge of disease progression. This review focuses on superiority of circulating biomarkers over tissue biomarkers due to the advantages of being more readily accessible, minimally invasive (blood) or noninvasive (urine), accessible for sampling on regular intervals, and easily utilized for follow-up after surgery or other treatment modalities. Some of the circulating biomarkers like PCA3, IL-6, and TMPRSS2-ERG are now detectable by commercially available kits while others like microRNAs (miR-21, -221, -141) and exosomes hold potential to become available as multiplexed assays. In this paper, we will review some of these potential candidate circulating biomarkers that either individually or in combination, once validated with large-scale trials, may eventually get utilized clinically for improved diagnosis, risk stratification, and treatment.
Collapse
Affiliation(s)
- Jaspreet Singh Batra
- Center of Cancer Systems Biology, GeneSys Research Institute, Tufts University, School of Medicine, 736 Cambridge Street, SEMC-CBR112, Boston, MA 02135, USA
| | - Swati Girdhani
- Center of Cancer Systems Biology, GeneSys Research Institute, Tufts University, School of Medicine, 736 Cambridge Street, SEMC-CBR112, Boston, MA 02135, USA
| | - Lynn Hlatky
- Center of Cancer Systems Biology, GeneSys Research Institute, Tufts University, School of Medicine, 736 Cambridge Street, SEMC-CBR112, Boston, MA 02135, USA
| |
Collapse
|
37
|
Pellacani D, Kestoras D, Droop AP, Frame FM, Berry PA, Lawrence MG, Stower MJ, Simms MS, Mann VM, Collins AT, Risbridger GP, Maitland NJ. DNA hypermethylation in prostate cancer is a consequence of aberrant epithelial differentiation and hyperproliferation. Cell Death Differ 2014; 21:761-73. [PMID: 24464224 DOI: 10.1038/cdd.2013.202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (CaP) is mostly composed of luminal-like differentiated cells, but contains a small subpopulation of basal cells (including stem-like cells), which can proliferate and differentiate into luminal-like cells. In cancers, CpG island hypermethylation has been associated with gene downregulation, but the causal relationship between the two phenomena is still debated. Here we clarify the origin and function of CpG island hypermethylation in CaP, in the context of a cancer cell hierarchy and epithelial differentiation, by analysis of separated basal and luminal cells from cancers. For a set of genes (including GSTP1) that are hypermethylated in CaP, gene downregulation is the result of cell differentiation and is not cancer specific. Hypermethylation is however seen in more differentiated cancer cells and is promoted by hyperproliferation. These genes are maintained as actively expressed and methylation-free in undifferentiated CaP cells, and their hypermethylation is not essential for either tumour development or expansion. We present evidence for the causes and the dynamics of CpG island hypermethylation in CaP, showing that, for a specific set of genes, promoter methylation is downstream of gene downregulation and is not a driver of gene repression, while gene repression is a result of tissue-specific differentiation.
Collapse
Affiliation(s)
- D Pellacani
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - D Kestoras
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - A P Droop
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - F M Frame
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - P A Berry
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - M G Lawrence
- Prostate Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - M J Stower
- York District Hospital, Wigginton Road, City Centre, York, UK
| | - M S Simms
- 1] Castle Hill Hospital, Castle Rd, Cottingham, East Yorkshire, UK [2] Hull York Medical School, University of Hull, Hull, UK
| | - V M Mann
- 1] Castle Hill Hospital, Castle Rd, Cottingham, East Yorkshire, UK [2] Hull York Medical School, University of Hull, Hull, UK
| | - A T Collins
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - G P Risbridger
- Prostate Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - N J Maitland
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| |
Collapse
|
38
|
Felgueiras J, Silva JV, Fardilha M. Prostate cancer: the need for biomarkers and new therapeutic targets. J Zhejiang Univ Sci B 2014; 15:16-42. [PMID: 24390742 PMCID: PMC3891116 DOI: 10.1631/jzus.b1300106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/08/2013] [Indexed: 12/16/2022]
Abstract
Prostate cancer (PCa) incidence and mortality have decreased in recent years. Nonetheless, it remains one of the most prevalent cancers in men, being a disquieting cause of men's death worldwide. Changes in many cell signaling pathways have a predominant role in the onset, development, and progression of the disease. These include prominent pathways involved in the growth, apoptosis, and angiogenesis of the normal prostate gland, such as androgen and estrogen signaling, and other growth factor signaling pathways. Understanding the foundations of PCa is leading to the discovery of key molecules that could be used to improve patient management. The ideal scenario would be to have a panel of molecules, preferably detectable in body fluids, that are specific and sensitive biomarkers for PCa. In the early stages, androgen deprivation is the gold standard therapy. However, as the cancer progresses, it eventually becomes independent of androgens, and hormonal therapy fails. For this reason, androgen-independent PCa is still a major therapeutic challenge. By disrupting specific protein interactions or manipulating the expression of some key molecules, it might be possible to regulate tumor growth and metastasis formation, avoiding the systemic side effects of current therapies. Clinical trials are already underway to assess the efficacy of molecules specially designed to target key proteins or protein interactions. In this review, we address that recent progress made towards understanding PCa development and the molecular pathways underlying this pathology. We also discuss relevant molecular markers for the management of PCa and new therapeutic challenges.
Collapse
|
39
|
Salomão L, Figueiredo RT, Oliveira Santos R, Damião R, da Silva EA. From palmistry to anthropometry: can 2nd to 4th digit length (2D:4D) predict the risk of prostate cancer? Urol Int 2013; 93:257-61. [PMID: 24334856 DOI: 10.1159/000354275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/04/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The 2nd to 4th digit length (2D:4D) is inversely related to androgen exposure during the fetal period, which may represent a risk factor for several steroid-related diseases. We aimed to evaluate the relationship between 2D:4D ratio and the risk of developing prostate cancer (PCa). SUBJECTS AND METHODS We assessed the 2D:4D ratio of 474 men >40 years old, stratified into three groups: group 1 (n = 222) patients with PCa, group 2 (n = 82) subjects with high risk of PCa, and group 3 (n = 170) men with low risk of PCa. Subjects were submitted to a digital picture of the ventral surface of the right hand and 2nd and 4th fingers measurements were determined by the distance from the proximal crease to the tip using computer-assisted analysis. RESULTS The mean serum prostate-specific antigen level was 7.5 ng/ml in the high-risk group and 0.92 ng/ml in the low-risk group (p < 0.05). The mean 2D:4D ratios were 0.96 ± 0.04, 0.97 ± 0.04 and 0.96 ± 0.04 for the PCa, high-risk and low-risk groups, respectively, and no difference was found among the three groups (p = 0.12). CONCLUSION Anthropometry of the hand using the 2D:4D ratio is not a predictor of PCa.
Collapse
Affiliation(s)
- Layla Salomão
- Service of Urology, Pedro Ernesto Memorial Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
40
|
Tewari M, Agarwal A, Mishra RR, Meena RN, Shukla HS. Epigenetic changes in carcinogenesis of gallbladder. Indian J Surg Oncol 2013; 4:356-61. [PMID: 24426757 PMCID: PMC3890022 DOI: 10.1007/s13193-013-0240-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 03/19/2013] [Indexed: 02/07/2023] Open
Abstract
Gallbladder cancer (GBC) is a lethal and a common malignancy affecting mostly females. There are restricted high incidence pockets across the world and in northern India highest incidence of GBC is reported from the Gangetic belt. The etiology of this disease remains largely unknown though several risk factors have been stated. The genetic aberrations in GBC involving mutations in tumor suppressor genes and oncogenes have been reported in literature. However, there is scarcity of data regarding epigenetic changes that may also be involved in gallbladder carcinogenesis. This review attempts to summarize our current understanding of the epigenetic changes in GBC.
Collapse
Affiliation(s)
- Mallika Tewari
- />Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 U.P. India
| | - Amit Agarwal
- />Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 U.P. India
| | - R. R. Mishra
- />Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - R. N. Meena
- />Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Hari S. Shukla
- />Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 U.P. India
| |
Collapse
|
41
|
Day TK, Bianco-Miotto T. Common gene pathways and families altered by DNA methylation in breast and prostate cancers. Endocr Relat Cancer 2013; 20:R215-32. [PMID: 23818572 DOI: 10.1530/erc-13-0204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epigenetic modifications, such as DNA methylation, are widely studied in cancer as they are stable and easy to measure genome wide. DNA methylation changes have been used to differentiate benign from malignant tissue and to predict tumor recurrence or patient outcome. Multiple genome wide DNA methylation studies in breast and prostate cancers have identified genes that are differentially methylated in malignant tissue compared with non-malignant tissue or in association with hormone receptor status or tumor recurrence. Although this has identified potential biomarkers for diagnosis and prognosis, what is highlighted by reviewing these studies is the similarities between breast and prostate cancers. In particular, the gene families/pathways targeted by DNA methylation in breast and prostate cancers have significant overlap and include homeobox genes, zinc finger transcription factors, S100 calcium binding proteins, and potassium voltage-gated family members. Many of the gene pathways targeted by aberrant methylation in breast and prostate cancers are not targeted in other cancers, suggesting that some of these targets may be specific to hormonal cancers. Genome wide DNA methylation profiles in breast and prostate cancers will not only define more specific and sensitive biomarkers for cancer diagnosis and prognosis but also identify novel therapeutic targets, which may be direct targets of agents that reverse DNA methylation or which may target novel gene families that are themselves DNA methylation targets.
Collapse
Affiliation(s)
- Tanya K Day
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, Hanson Institute, Adelaide Prostate Cancer Research Centre, The University of Adelaide, South Australia, Australia
| | | |
Collapse
|
42
|
Singh PK, Campbell MJ. The Interactions of microRNA and Epigenetic Modifications in Prostate Cancer. Cancers (Basel) 2013; 5:998-1019. [PMID: 24202331 PMCID: PMC3795376 DOI: 10.3390/cancers5030998] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 12/27/2022] Open
Abstract
Epigenetic modifiers play important roles in fine-tuning the cellular transcriptome. Any imbalance in these processes may lead to abnormal transcriptional activity and thus result in disease state. Distortions of the epigenome have been reported in cancer initiation and progression. DNA methylation and histone modifications are principle components of this epigenome, but more recently it has become clear that microRNAs (miRNAs) are another major component of the epigenome. Interactions of these components are apparent in prostate cancer (CaP), which is the most common non-cutaneous cancer and second leading cause of death from cancer in the USA. Changes in DNA methylation, altered histone modifications and miRNA expression are functionally associated with CaP initiation and progression. Various aspects of the epigenome have also been investigated as biomarkers for different stages of CaP detection, though with limited success. This review aims to summarize key aspects of these mechanistic interactions within the epigenome and to highlight their translational potential as functional biomarkers. To this end, exploration of TCGA prostate cancer data revealed that expression of key CaP miRNAs inversely associate with DNA methylation. Given the importance and prevalence of these epigenetic events in CaP biology it is timely to understand further how different epigenetic components interact and influence each other.
Collapse
Affiliation(s)
- Prashant Kumar Singh
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | |
Collapse
|
43
|
Haldrup C, Mundbjerg K, Vestergaard EM, Lamy P, Wild P, Schulz WA, Arsov C, Visakorpi T, Borre M, Høyer S, Orntoft TF, Sørensen KD. DNA methylation signatures for prediction of biochemical recurrence after radical prostatectomy of clinically localized prostate cancer. J Clin Oncol 2013; 31:3250-8. [PMID: 23918943 DOI: 10.1200/jco.2012.47.1847] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Diagnostic and prognostic tools for prostate cancer (PC) are suboptimal, causing overtreatment of indolent PC and risk of delayed treatment of aggressive PC. Here, we identify six novel candidate DNA methylation markers for PC with promising diagnostic and prognostic potential. METHODS Microarray-based screening and bisulfite sequencing of 20 nonmalignant and 29 PC tissue specimens were used to identify new candidate DNA hypermethylation markers for PC. Diagnostic and prognostic potential was evaluated in 35 nonmalignant prostate tissue samples, 293 radical prostatectomy (RP) samples (cohort 1, training), and 114 malignant RP samples (cohort 2, validation) collected in Denmark, Switzerland, Germany, and Finland. Sensitivity and specificity for PC were evaluated by receiver operating characteristic analyses. Correlations between DNA methylation levels and biochemical recurrence were assessed using log-rank tests and univariate and multivariate Cox regression analyses. RESULTS Hypermethylation of AOX1, C1orf114, GAS6, HAPLN3, KLF8, and MOB3B was highly cancer specific (area under the curve, 0.89 to 0.98). Furthermore, high C1orf114 methylation was significantly (P < .05) associated with biochemical recurrence in multivariate analysis in cohort 1 (hazard ratio [HR], 3.10; 95% CI, 1.89 to 5.09) and was successfully validated in cohort 2 (HR, 3.27; 95% CI, 1.17 to 9.12). Moreover, a significant (P < .05) three-gene prognostic methylation signature (AOX1/C1orf114/HAPLN3), classifying patients into low- and high-methylation subgroups, was trained in cohort 1 (HR, 1.91; 95% CI, 1.26 to 2.90) and validated in cohort 2 (HR, 2.33; 95% CI, 1.31 to 4.13). CONCLUSION We identified six novel candidate DNA methylation markers for PC. C1orf114 hypermethylation and a three-gene methylation signature were independent predictors of time to biochemical recurrence after RP in two PC patient cohorts.
Collapse
Affiliation(s)
- Christa Haldrup
- Christa Haldrup, Kamilla Mundbjerg, Else Marie Vestergaard, Philippe Lamy, Michael Borre, Søren Høyer, Torben F. Ørntoft, and Karina D. Sørensen, Aarhus University Hospital, Aarhus, Denmark; Peter Wild, University Hospital Zurich, Zurich, Switzerland; Wolfgang A. Schulz and Christian Arsov, Heinrich Heine University, Düsseldorf, Germany; and Tapio Visakorpi, University of Tampere and Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Luo JH, Ding Y, Chen R, Michalopoulos G, Nelson J, Tseng G, Yu YP. Genome-wide methylation analysis of prostate tissues reveals global methylation patterns of prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2028-36. [PMID: 23583283 DOI: 10.1016/j.ajpath.2013.02.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/22/2013] [Accepted: 02/01/2013] [Indexed: 12/15/2022]
Abstract
Altered genome methylation is a hallmark of human malignancies. In this study, high-throughput analyses of concordant gene methylation and expression events were performed for 91 human prostate specimens, including prostate tumor (T), matched normal adjacent to tumor (AT), and organ donor (OD). Methylated DNA in genomic DNA was immunoprecipitated with anti-methylcytidine antibodies and detected by Affymetrix human whole genome SNP 6.0 chips. Among the methylated CpG islands, 11,481 islands were found located in the promoter and exon 1 regions of 9295 genes. Genes (7641) were methylated frequently across OD, AT, and T samples, whereas 239 genes were differentially methylated in only T and 785 genes in both AT and T but not OD. Genes with promoter methylation and concordantly suppressed expression were identified. Pathway analysis suggested that many of the methylated genes in T and AT are involved in cell growth and mitogenesis. Classification analysis of the differentially methylated genes in T or OD produced a specificity of 89.4% and a sensitivity of 85.7%. The T and AT groups, however, were only slightly separated by the prediction analysis, indicating a strong field effect. A gene methylation prediction model was shown to predict prostate cancer relapse with sensitivity of 80.0% and specificity of 85.0%. These results suggest methylation patterns useful in predicting clinical outcomes of prostate cancer.
Collapse
Affiliation(s)
- Jian-Hua Luo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Lee C, Zhang Q, Zi X, Dash A, Soares MB, Rahmatpanah F, Jia Z, McClelland M, Mercola D. TGF-β mediated DNA methylation in prostate cancer. Transl Androl Urol 2012; 1:78-88. [PMID: 25133096 PMCID: PMC4131550 DOI: 10.3978/j.issn.2223-4683.2012.05.06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/04/2012] [Indexed: 12/15/2022] Open
Abstract
Almost all tumors harbor a defective negative feedback loop of signaling by transforming growth factor-β (TGF-β). Epigenetic mechanisms of gene regulation, including DNA methylation, are fundamental to normal cellular function and also play a major role in carcinogenesis. Recent evidence demonstrated that TGF-β signaling mediates cancer development and progression. Many key events in TGF-β signaling in cancer included auto-induction of TGF-β1 and increased expression of DNA methyltransferases (DNMTs), suggesting that DNA methylation plays a significant role in cancer development and progression. In this review, we performed an extensive survey of the literature linking TGF-β signaling to DNA methylation in prostate cancer. It appeared that almost all DNA methylated genes detected in prostate cancer are directly or indirectly related to TGF-β signaling. This knowledge has provided a basis for our future directions of prostate cancer research and strategies for prevention and therapy for prostate cancer.
Collapse
|