1
|
Yan C, Yin H, Zhang Y, Ren Z, Wang J, Li Y. Mixed infections with new emerging viruses associated with jujube mosaic disease. Int Microbiol 2023; 26:1103-1112. [PMID: 37118189 DOI: 10.1007/s10123-023-00365-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Jujube is an economically important fruit tree and native to China. Viral disease is a new threat to jujube production, and several new viruses have been identified infecting jujube plants. During our field survey, jujube mosaic disease was widely distributed in Beijing, but the associated causal agents are still unknown. METHODS Small RNA deep sequencing was conducted to identify the candidate viruses associated with jujube mosaic. Further complete genome sequences of the viruses were cloned, and the genomic characterization of each virus was analyzed. The field distribution of these viruses was further explored with PCR/RT-PCR detection of field samples. RESULTS Mixed infection of four viruses was identified in a plant sample with the symptom of mosaic and leaf twisting, including the previously reported jujube yellow mottle-associated virus (JYMaV), persimmon ampelovirus (PAmpV), a new badnavirus tentatively named jujube-associated badnavirus (JaBV), and a new secovirus tentatively named jujube-associated secovirus (JaSV). PAmpV-jujube was 14,093 nt in length with seven putative open reading frames (ORFs) and shared highest (79.4%) nucleotide (nt) sequence identity with PAmpV PBs3. Recombination analysis showed that PAmpV-jujube was a recombinant originating from plum bark necrosis stem pitting-associated virus isolates nanjing (KC590347) and bark (EF546442). JaBV was 6449 bp in length with conserved genomic organization typical of badnaviruses. The conserved RT and RNAse H region shared highest 67.6% nt sequence identity with jujube mosaic-associated virus, which was below the 80% nt sequence identity value used as the species demarcation threshold in Badnavirus. The genome of JaSV composed of two RNA molecules of 5878 and 3337 nts in length, excluding the polyA tails. Each genome segment contained one large ORF that shared homology and phylogenetic identity with members of the family Secoviridae. Field survey showed JYMaV and JaBV were widely distributed in jujube trees in Beijing. CONCLUSION Two new viruses were identified from jujube plants, and mixed infections of JYMaV and JaBV were common in jujube in Beijing.
Collapse
Affiliation(s)
- Chenge Yan
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Hang Yin
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Zhengguang Ren
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Jinzhong Wang
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Yongqiang Li
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China.
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
2
|
Chen H, Li W, Chen X, Liu G, Liu X, Cui X, Liu D. Viral infections inhibit saponin biosynthesis and photosynthesis in Panax notoginseng. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108038. [PMID: 37722283 DOI: 10.1016/j.plaphy.2023.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/26/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Virus-infected Panax notoginseng plants with chlorotic, mosaic, and pitted leaves are ubiquitous in the primary P. notoginseng-producing region in Wenshan autonomous prefecture, Yunnan province, China. However, the viruses that infect P. notoginseng and the effects of viral infections on the biosynthesis of secondary metabolites and photosynthesis remain unknown. This study identified a variety of viruses infecting P. notoginseng plants via deep-sequencing of small RNA (sRNA). Of the 10 identified viruses, seven had not previously been detected in P. notoginseng, including Cauliflower mosaic virus and Soybean chlorotic mottle virus. In addition, the simultaneous infection of P. notoginseng by Panax notoginseng virus A (PnVA), Panax cryptic virus 4 (PCV4), and Tomato yellow leaf curl China virus (TYLCCNV) was confirmed by PCR. Moreover, a quantitative PCR analysis showed that the expression levels of key genes related to saponin biosynthesis were generally down-regulated in the virus-infected P. notoginseng. Additionally, high-performance liquid chromatography results indicated the saponin content decreased in the roots of virus-infected P. notoginseng plants. The activities of photosynthesis-related enzymes, including ribulose-1,5-bisphosphate carboxylase/oxygenase, fructose 1,6-bisphosphatase, and fructose 1,6-biphosphate aldolase, decreased significantly in the virus-infected P. notoginseng plants. The viral infections also induced the expression of antioxidant genes and increased antioxidant enzyme activities. Furthermore, the expression levels of many resistance-related genes were up-regulated in P. notoginseng plants inoculated with a viral suspension. The study results provide the foundation for future research on P. notoginseng viral diseases, which may lead to the development of enhanced disease control measures.
Collapse
Affiliation(s)
- Hongjun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China; Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Wenyun Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China; Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Xiaohua Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China; Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Guanze Liu
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuyan Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China; Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China; Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China.
| |
Collapse
|
3
|
Jia A, Yan C, Yin H, Sun R, Xia F, Gao L, Zhang Y, Li Y. Small RNA and Transcriptome Sequencing of a Symptomatic Peony Plant Reveals Mixed Infections with Novel Viruses. PLANT DISEASE 2021; 105:3816-3828. [PMID: 34156278 DOI: 10.1094/pdis-01-21-0007-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To identify the viruses in tree peony plants associated with the symptoms of yellowing, leaf rolling, stunted growth, and decline, high-throughput sequencing of small RNA and mRNA was conducted from a single symptomatic plant. Bioinformatic analyses and reconstruction of viral genomes indicated mixed viral infections involving cycas necrotic stunt virus, apple stem grooving virus, lychnis mottle virus, grapevine line pattern virus, and three new viruses designated as peony yellowing-associated citrivirus (PYaCV, Citrivirus in Betaflexiviridae), peony betaflexivirus 1 (PeV1, unclassified in Betaflexiviridae), and peony leafroll-associated virus (PLRaV, Ampelovirus in Closteroviridae). PYaCV was 8,666 nucleotides (nt) in length, comprising three open reading frames (ORFs), and shared 63.8 to 75.9% nt sequence identity with citrus leaf blotch virus (CLBV) isolates. However, the ORF encoding the replication-associated protein (REP) shared 57 and 52% sequence identities at the nt and amino acid (aa) level, respectively, with other reported CLBV isolates, which were below the criterion for species classification within the family Betaflexiviridae. Recombination analysis identified putative recombination sites in PYaCV, which originated from CLBV. PeV1, only identified from the transcriptome data, was 8,124 nt in length, with five ORFs encoding the REP (ORF1), triple gene block (ORF2 to 4) and coat protein (CP, ORF5). Phylogenetic analysis and sequence comparison showed that PeV1 clustered with an unassigned member, the garlic yellow mosaic-associated virus within the Betaflexiviridae family, into a separate clade. Partial genome sequence analysis of PLRaV (12,545 nt) showed it contained seven ORFs encoding the partial polyprotein 1a, the RNA-dependent RNA polymerase (RdRp), two small hydrophobic proteins p11 and p6, HSP70h, p55, and a CP duplicate, which shared low aa sequence identity with Closteroviridae family members. Phylogenetic analysis based on the aa sequences of RdRp or HSP70h indicated that PLRaV clustered with grapevine leafroll-associated virus 1 (GLRaV-1) and GLRaV-13 in the Ampelovirus genus. Field investigation confirmed the wide distribution of these viruses, causing mixed infections of peony plants in Beijing.
Collapse
Affiliation(s)
- Anning Jia
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Chenge Yan
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Hang Yin
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Rui Sun
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Fei Xia
- Beijing Institute of Landscape Architecture, Beijing 100102, China
| | - Lan Gao
- Beijing JingShan Park, Beijing 100009, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yongqiang Li
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
4
|
Rubio L, Galipienso L, Ferriol I. Detection of Plant Viruses and Disease Management: Relevance of Genetic Diversity and Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:1092. [PMID: 32765569 PMCID: PMC7380168 DOI: 10.3389/fpls.2020.01092] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/02/2020] [Indexed: 05/04/2023]
Abstract
Plant viruses cause considerable economic losses and are a threat for sustainable agriculture. The frequent emergence of new viral diseases is mainly due to international trade, climate change, and the ability of viruses for rapid evolution. Disease control is based on two strategies: i) immunization (genetic resistance obtained by plant breeding, plant transformation, cross-protection, or others), and ii) prophylaxis to restrain virus dispersion (using quarantine, certification, removal of infected plants, control of natural vectors, or other procedures). Disease management relies strongly on a fast and accurate identification of the causal agent. For known viruses, diagnosis consists in assigning a virus infecting a plant sample to a group of viruses sharing common characteristics, which is usually referred to as species. However, the specificity of diagnosis can also reach higher taxonomic levels, as genus or family, or lower levels, as strain or variant. Diagnostic procedures must be optimized for accuracy by detecting the maximum number of members within the group (sensitivity as the true positive rate) and distinguishing them from outgroup viruses (specificity as the true negative rate). This requires information on the genetic relationships within-group and with members of other groups. The influence of the genetic diversity of virus populations in diagnosis and disease management is well documented, but information on how to integrate the genetic diversity in the detection methods is still scarce. Here we review the techniques used for plant virus diagnosis and disease control, including characteristics such as accuracy, detection level, multiplexing, quantification, portability, and designability. The effect of genetic diversity and evolution of plant viruses in the design and performance of some detection and disease control techniques are also discussed. High-throughput or next-generation sequencing provides broad-spectrum and accurate identification of viruses enabling multiplex detection, quantification, and the discovery of new viruses. Likely, this technique will be the future standard in diagnostics as its cost will be dropping and becoming more affordable.
Collapse
Affiliation(s)
- Luis Rubio
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
- *Correspondence: Luis Rubio,
| | - Luis Galipienso
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Inmaculada Ferriol
- Plant Responses to Stress Programme, Centre for Research in Agricultural Genomics (CRAG-CSIC_UAB-UB) Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
5
|
Singh DK, Lee HK, Dweikat I, Mysore KS. An efficient and improved method for virus-induced gene silencing in sorghum. BMC PLANT BIOLOGY 2018; 18:123. [PMID: 29914379 PMCID: PMC6006947 DOI: 10.1186/s12870-018-1344-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/06/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Although the draft genome of sorghum is available, the understanding of gene function is limited due to the lack of extensive mutant resources. Virus-induced gene silencing (VIGS) is an alternative to mutant resources to study gene function. This study reports an improved and efficient method for Brome mosaic virus (BMV)-based VIGS in sorghum. METHODS Sorghum plants were rub-inoculated with sap prepared by grinding 2 g of infected Nicotiana benthamiana leaf in 1 ml 10 mM potassium phosphate buffer (pH 6.8) and 100 mg of carborundum abrasive. The sap was rubbed on two to three top leaves of sorghum. Inoculated plants were covered with a dome to maintain high humidity and kept in the dark for two days at 18 °C. Inoculated plants were then transferred to 18 °C growth chamber with 12 h/12 h light/dark cycle. RESULTS This study shows that BMV infection rate can be significantly increased in sorghum by incubating plants at 18 °C. A substantial variation in BMV infection rate in sorghum genotypes/varieties was observed and BTx623 was the most susceptible. Ubiquitin (Ubiq) silencing is a better visual marker for VIGS in sorghum compared to other markers such as Magnesium Chelatase subunit H (ChlH) and Phytoene desaturase (PDS). The use of antisense strand of a gene in BMV was found to significantly increase the efficiency and extent of VIGS in sorghum. In situ hybridization experiments showed that the non-uniform silencing in sorghum is due to the uneven spread of the virus. This study further demonstrates that genes could also be silenced in the inflorescence of sorghum. CONCLUSION In general, sorghum plants are difficult to infect with BMV and therefore recalcitrant to VIGS studies. However, by using BMV as a vector, a BMV susceptible sorghum variety, 18 °C for incubating plants, and antisense strand of the target gene fragment, efficient VIGS can still be achieved in sorghum.
Collapse
Affiliation(s)
| | - Hee-Kyung Lee
- Noble Research Institute, Ardmore, Oklahoma 73401 USA
| | - Ismail Dweikat
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68583 USA
| | | |
Collapse
|
6
|
Wang Y, Cheng X, Wu X, Wang A, Wu X. Characterization of complete genome and small RNA profile of pagoda yellow mosaic associated virus, a novel badnavirus in China. Virus Res 2014; 188:103-8. [PMID: 24751798 DOI: 10.1016/j.virusres.2014.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/06/2014] [Accepted: 04/09/2014] [Indexed: 12/16/2022]
Abstract
A new badnavirus was discovered from pagoda trees showing yellow mosaic symptoms on the leaves by high throughput sequencing of small RNAs. The complete genome of this virus was determined to comprise 7424 nucleotides, and the virus shared 40.4-45.1% identity with that of other badnaviruses. The genome encodes five open reading frames (ORFs) on the plus strand, which includes three conserved badnaviral ORFs. These results suggest that this virus is a new member of the genus Badnavirus in the family Caulimoviridae. The virus is tentatively named pagoda yellow mosaic associated virus (PYMAV). Phylogenetic analysis suggested that this virus together with gooseberry vein banding virus (GVBV) and grapevine vein-clearing virus (GVCV) forms a separate group that is distinct two other well characterized badnaviral groups. Additionally, the viral derived small RNA (vsRNA) profile of PYMAV was analyzed and compared with that of viruses within the same family. Results showed that the most abundant PYMAV vsRNAs were 21-nt, whereas other viruses in the same family have a predominance of 22- or 24-nt vsRNA. The percentage of sense PYMAV vsRNA was almost equal to that of antisense vsRNA, whereas vsRNAs of other viruses in the family display preferences toward the sense strand of their genome. Furthermore, PYMAV vsRNAs were symmetrically distributed along the genome with no obvious vsRNA generating hotspots.
Collapse
Affiliation(s)
- Yilun Wang
- College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Lin'an 311300, Zhejiang, PR China
| | - Xiaofei Cheng
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, Zhejiang, PR China; Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London N5V 4T3, Ontario, Canada
| | - Xiaoxia Wu
- College of Agriculture, Northeast Agricultural University, Key Laboratory of Soybean Biology, Ministry of Education, Harbin 150030, Heilongjiang, PR China
| | - Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London N5V 4T3, Ontario, Canada
| | - Xiaoyun Wu
- College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Lin'an 311300, Zhejiang, PR China.
| |
Collapse
|
7
|
Li J, Andika IB, Zhou Y, Shen J, Sun Z, Wang X, Sun L, Chen J. Unusual characteristics of dicistrovirus-derived small RNAs in the small brown planthopper, Laodelphax striatellus. J Gen Virol 2013; 95:712-718. [PMID: 24323637 DOI: 10.1099/vir.0.059626-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this study, sequences of small RNA (sRNA) libraries derived from the insect vector Laodelphax striatellus were assembled into contigs and used as queries for database searches. A large number of contigs were highly homologous to the genome sequence of an insect dicistrovirus, himetobi P virus (HiPV). Interestingly, HiPV-derived sRNAs had a wide size distribution, and were relatively abundant throughout the 18-30 nt size range with only a slight peak at 22 nt. HiPV sRNAs had a strong bias towards the sense strand, whilst the antisense sRNAs were predominantly 21 and 22 nt. HiPV sRNAs do not have the typical features of PIWI-interacting RNAs, but their 3' ends were preferentially cleaved at UA-rich sequences. Our data suggest that HiPV sRNAs may be derived both from activities of the RNA interference pathway and from cleavage of the viral genome by other host RNases.
Collapse
Affiliation(s)
- Junmin Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Ida Bagus Andika
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yanru Zhou
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jiangfeng Shen
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, PR China
| | - Zongtao Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xu Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Liying Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Jianping Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| |
Collapse
|
8
|
Folimonova SY. Developing an understanding of cross-protection by Citrus tristeza virus. Front Microbiol 2013; 4:76. [PMID: 23577008 PMCID: PMC3616238 DOI: 10.3389/fmicb.2013.00076] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/15/2013] [Indexed: 11/29/2022] Open
Abstract
Citrus tristeza virus (CTV) causes two citrus diseases that have caused devastating losses in global citrus production. The first disease is quick decline of trees propagated on the sour orange rootstock. The second disease is stem pitting, which severely affects a number of economically important citrus varieties regardless of the rootstock used and results in reduced tree growth and vigor as well as in reduced fruit size and quality. Both diseases continue to invade new areas. While quick decline could be effectively managed by the use of resistant and/or tolerant rootstocks, the only means to protect commercial citrus against endemic stem pitting isolates of CTV has been cross-protection with mild isolates of the virus. In some citrus areas cross-protection has been successful and allowed production of certain citrus cultivars despite the presence of severe stem pitting isolates in those regions. However, many other attempts to find isolates that would provide sustained protection against aggressive isolates of the virus had failed. In general, there has been no understanding why some mild isolates were effective and others failed to protect. We have been working on the mechanism of cross-protection by CTV. Recent considerable progress has significantly advanced our understanding of how cross-protection may work in the citrus/CTV pathosystem. As we demonstrated, only isolates that belong to the same strain of the virus cross protect against each other, while isolates from different strains do not. We believe that the results of our research could now make finding protecting isolates relatively straightforward. This review discusses some of the history of CTV cross-protection along with the recent findings and our "recipe" for selection of protecting isolates.
Collapse
|
9
|
Berard A, Kroeker AL, Coombs KM. Transcriptomics and quantitative proteomics in virology. Future Virol 2012. [DOI: 10.2217/fvl.12.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|