1
|
Lefranc MP, Lefranc G. Using IMGT unique numbering for IG allotypes and Fc-engineered variants of effector properties and half-life of therapeutic antibodies. Immunol Rev 2024. [PMID: 39367563 DOI: 10.1111/imr.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Therapeutic monoclonal antibodies (mAb) are usually of the IgG1, IgG2, and IgG4 classes, and their heavy chains may be modified by amino acid (aa) changes involved in antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), complement-dependent cytotoxicity (CDC), and/or half-life. Allotypes and Fc-engineered variants are classified using IMGT/HGNC gene nomenclature (e.g., Homo sapiens IGHG1). Allotype names follow the WHO/IMGT nomenclature. IMGT-engineered variant names use the IMGT nomenclature (e.g., Homsap G1v1), which comprises species and gene name (both abbreviated) followed by the letter v (for variant) and a number. Both allotypes and engineered variants are defined by their aa changes and positions, based on the IMGT unique numbering for C domain, identified in sequence motifs, referred to as IMGT topological motifs, as their limits and length are standardized and correspond to a structural feature (e.g., strand or loop). One hundred twenty-six variants are displayed with their type, IMGT numbering, Eu-IMGT positions, motifs before and after changes, and their property and function (effector and half-life). Three motifs characterize effector variants, CH2 1.6-3, 23-BC-41, and the FG loop, whereas three different motifs characterize half-life variants, two on CH2 13-AB-18 and 89-96 with H93, and one on CH3 the FG loop with H115.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, the international ImMunoGeneTics information system® (IMGT), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR 9002 Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier Cedex 5, France
| | - Gérard Lefranc
- IMGT®, the international ImMunoGeneTics information system® (IMGT), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR 9002 Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier Cedex 5, France
| |
Collapse
|
2
|
Polonsky K, Pupko T, Freund NT. Evaluation of the Ability of AlphaFold to Predict the Three-Dimensional Structures of Antibodies and Epitopes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1578-1588. [PMID: 37782047 DOI: 10.4049/jimmunol.2300150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023]
Abstract
Being able to accurately predict the three-dimensional structure of an Ab can facilitate Ab characterization and epitope prediction, with important diagnostic and clinical implications. In this study, we evaluated the ability of AlphaFold to predict the structures of 222 recently published, high-resolution Fab H and L chain structures of Abs from different species directed against different Ags. We show that although the overall Ab prediction quality is in line with the results of CASP14, regions such as the complementarity-determining regions (CDRs) of the H chain, which are prone to higher variation, are predicted less accurately. Moreover, we discovered that AlphaFold mispredicts the bending angles between the variable and constant domains. To evaluate the ability of AlphaFold to model Ab-Ag interactions based only on sequence, we used AlphaFold-Multimer in combination with ZDOCK to predict the structures of 26 known Ab-Ag complexes. ZDOCK, which was applied on bound components of both the Ab and the Ag, succeeded in assembling 11 complexes, whereas AlphaFold succeeded in predicting only 2 of 26 models, with significant deviations in the docking contacts predicted in the rest of the molecules. Within the 11 complexes that were successfully predicted by ZDOCK, 9 involved short-peptide Ags (18-mer or less), whereas only 2 were complexes of Ab with a full-length protein. Docking of modeled unbound Ab and Ag was unsuccessful. In summary, our study provides important information about the abilities and limitations of using AlphaFold to predict Ab-Ag interactions and suggests areas for possible improvement.
Collapse
Affiliation(s)
- Ksenia Polonsky
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Pupko
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Natalia T Freund
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Lefranc MP, Lefranc G. Antibody Sequence and Structure Analyses Using IMGT ®: 30 Years of Immunoinformatics. Methods Mol Biol 2023; 2552:3-59. [PMID: 36346584 DOI: 10.1007/978-1-0716-2609-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
IMGT®, the international ImMunoGeneTics information system®, http://www.imgt.org , the global reference in immunogenetics and immunoinformatics, was created in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS) to manage the huge diversity of the antigen receptors, immunoglobulins (IG) or antibodies, and T cell receptors (TR) of the adaptive immune responses. The founding of IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT® standardized analysis of the IG, TR, and major histocompatibility (MH) genes and proteins bridges the gap between sequences and three-dimensional (3D) structures, for all jawed vertebrates from fish to humans. This is achieved through the IMGT Scientific chart rules, based on the IMGT-ONTOLOGY axioms, and primarily CLASSIFICATION (IMGT gene and allele nomenclature) and NUMEROTATION (IMGT unique numbering and IMGT Colliers de Perles). IMGT® comprises seven databases (IMGT/LIGM-DB for nucleotide sequences, IMGT/GENE-DB for genes and alleles, etc.), 17 tools (IMGT/V-QUEST, IMGT/JunctionAnalysis, IMGT/HighV-QUEST for NGS, etc.), and more than 20,000 Web resources. In this chapter, the focus is on the tools for amino acid sequences per domain (IMGT/DomainGapAlign and IMGT/Collier-de-Perles), and on the databases for receptors (IMGT/2Dstructure-DB and IMGT/3D-structure-DB) described per receptor, chain, and domain and, for 3D, with contact analysis, paratope, and epitope. The IMGT/mAb-DB is the query interface for monoclonal antibodies (mAb), fusion proteins for immune applications (FPIA), composite proteins for clinical applications (CPCA), and related proteins of interest (RPI) with links to IMGT® 2D and 3D databases and to the World Health Organization (WHO) International Nonproprietary Names (INN) program lists. The chapter includes the human IG allotypes and antibody engineered variants for effector properties used in the description of therapeutical mAb.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS, Université de Montpellier, Montpellier cedex 5, France.
| | - Gérard Lefranc
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS, Université de Montpellier, Montpellier cedex 5, France.
| |
Collapse
|
4
|
Lefranc MP, Lefranc G. IMGT ® Nomenclature of Engineered IGHG Variants Involved in Antibody Effector Properties and Formats. Antibodies (Basel) 2022; 11:65. [PMID: 36278618 PMCID: PMC9624366 DOI: 10.3390/antib11040065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The constant region of the immunoglobulin (IG) or antibody heavy gamma chain is frequently engineered to modify the effector properties of the therapeutic monoclonal antibodies. These variants are classified in regards to their effects on effector functions, antibody-dependent cytotoxicity (ADCC), antibody-dependent phagocytosis (ADCP), complement-dependent cytotoxicity (CDC) enhancement or reduction, B cell inhibition by the coengagement of antigen and FcγR on the same cell, on half-life increase, and/or on structure such as prevention of IgG4 half-IG exchange, hexamerisation, knobs-into-holes and the heteropairing H-H of bispecific antibodies, absence of disulfide bridge inter H-L, absence of glycosylation site, and site-specific drug attachment engineered cysteine. The IMGT engineered variant identifier is comprised of the species and gene name (and eventually allele), the letter 'v' followed by a number (assigned chronologically), and for each concerned domain (e.g, CH1, h, CH2 and CH3), the novel AA (single letter abbreviation) and IMGT position according to the IMGT unique numbering for the C-domain and between parentheses, the Eu numbering. IMGT engineered variants are described with detailed amino acid changes, visualized in motifs based on the IMGT numbering bridging genes, sequences, and structures for higher order description.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d’ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), UMR 9002 CNRS-UM, CEDEX 5, 34396 Montpellier, France
| | - Gérard Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d’ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), UMR 9002 CNRS-UM, CEDEX 5, 34396 Montpellier, France
| |
Collapse
|
5
|
Lefranc MP, Lefranc G. IMGT/3Dstructure-DB: T-Cell Receptor TR Paratope and Peptide/Major Histocompatibility pMH Contact Sites and Epitope. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2453:533-570. [PMID: 35622341 DOI: 10.1007/978-1-0716-2115-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
T-cell receptors (TR), the antigen receptors of T cells, specifically recognize peptides presented by the major histocompatibility (MH) proteins, as peptide/MH (pMH), on the cell surface. The structure characterization of the trimolecular TR/pMH complexes is crucial to the fields of immunology, vaccination, and immunotherapy. IMGT/3Dstructure-DB is the three-dimensional (3-D) structure database of IMGT®, the international ImMunoGenetics information system®. By its creation, IMGT® marks the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. The IMGT® immunoglobulin (IG) and TR gene and allele nomenclature (CLASSIFICATION axiom) and the IMGT unique numbering and IMGT/Collier-de-Perles (NUMEROTATION axiom) are the two founding breakthroughs of immunoinformatics. IMGT-ONTOLOGY concepts and IMGT Scientific chart rules generated from these axioms allowed IMGT® bridging genes, structures, and functions. IMGT/3Dstructure-DB contains 3-D structures of IG or antibodies, TR and MH proteins of the adaptive immune responses of jawed vertebrates (gnathostomata), IG or TR complexes with antigens (IG/Ag, TR/pMH), related proteins of the immune system of any species belonging to the IG and MH superfamilies, and fusion proteins for immune applications. The focus of this chapter is on the TR V domains and MH G domains and the contact analysis comparison in TR/pMH interactions. Standardized molecular characterization includes "IMGT pMH contact sites" for peptide and MH groove interactions and "IMGT paratopes and epitopes" for TR/pMH complexes. Data are available in the IMGT/3Dstructure database, at the IMGT Home page http://www.imgt.org .
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, the international ImMunoGenetics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002, CNRS, Université de Montpellier, Montpellier cedex 5, France.
| | - Gérard Lefranc
- IMGT®, the international ImMunoGenetics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002, CNRS, Université de Montpellier, Montpellier cedex 5, France.
| |
Collapse
|
6
|
Lefranc MP, Lefranc G. IMGT ®Homo sapiens IG and TR Loci, Gene Order, CNV and Haplotypes: New Concepts as a Paradigm for Jawed Vertebrates Genome Assemblies. Biomolecules 2022; 12:381. [PMID: 35327572 PMCID: PMC8945572 DOI: 10.3390/biom12030381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
IMGT®, the international ImMunoGeneTics information system®, created in 1989, by Marie-Paule Lefranc (Université de Montpellier and CNRS), marked the advent of immunoinformatics, a new science which emerged at the interface between immunogenetics and bioinformatics for the study of the adaptive immune responses. IMGT® is based on a standardized nomenclature of the immunoglobulin (IG) and T cell receptor (TR) genes and alleles from fish to humans and on the IMGT unique numbering for the variable (V) and constant (C) domains of the immunoglobulin superfamily (IgSF) of vertebrates and invertebrates, and for the groove (G) domain of the major histocompatibility (MH) and MH superfamily (MhSF) proteins. IMGT® comprises 7 databases, 17 tools and more than 25,000 pages of web resources for sequences, genes and structures, based on the IMGT Scientific chart rules generated from the IMGT-ONTOLOGY axioms and concepts. IMGT® reference directories are used for the analysis of the NGS high-throughput expressed IG and TR repertoires (natural, synthetic and/or bioengineered) and for bridging sequences, two-dimensional (2D) and three-dimensional (3D) structures. This manuscript focuses on the IMGT®Homo sapiens IG and TR loci, gene order, copy number variation (CNV) and haplotypes new concepts, as a paradigm for jawed vertebrates genome assemblies.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d’Immuno Génétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), UMR 9002 CNRS-UM, 141 rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| | - Gérard Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d’Immuno Génétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), UMR 9002 CNRS-UM, 141 rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| |
Collapse
|
7
|
Manso T, Folch G, Giudicelli V, Jabado-Michaloud J, Kushwaha A, Nguefack Ngoune V, Georga M, Papadaki A, Debbagh C, Pégorier P, Bertignac M, Hadi-Saljoqi S, Chentli I, Cherouali K, Aouinti S, El Hamwi A, Albani A, Elazami Elhassani M, Viart B, Goret A, Tran A, Sanou G, Rollin M, Duroux P, Kossida S. IMGT® databases, related tools and web resources through three main axes of research and development. Nucleic Acids Res 2021; 50:D1262-D1272. [PMID: 34875068 PMCID: PMC8728119 DOI: 10.1093/nar/gkab1136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 11/28/2021] [Indexed: 11/15/2022] Open
Abstract
IMGT®, the international ImMunoGeneTics information system®, http://www.imgt.org/, is at the forefront of the immunogenetics and immunoinformatics fields with more than 30 years of experience. IMGT® makes available databases and tools to the scientific community pertaining to the adaptive immune response, based on the IMGT-ONTOLOGY. We focus on the recent features of the IMGT® databases, tools, reference directories and web resources, within the three main axes of IMGT® research and development. Axis I consists in understanding the adaptive immune response, by deciphering the identification and characterization of the immunoglobulin (IG) and T cell receptor (TR) genes in jawed vertebrates. It is the starting point of the two other axes, namely the analysis and exploration of the expressed IG and TR repertoires based on comparison with IMGT reference directories in normal and pathological situations (Axis II) and the analysis of amino acid changes and functions of 2D and 3D structures of antibody and TR engineering (Axis III).
Collapse
Affiliation(s)
- Taciana Manso
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Géraldine Folch
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Véronique Giudicelli
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Joumana Jabado-Michaloud
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Anjana Kushwaha
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Viviane Nguefack Ngoune
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Maria Georga
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Ariadni Papadaki
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Chahrazed Debbagh
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Perrine Pégorier
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Morgane Bertignac
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Saida Hadi-Saljoqi
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Imène Chentli
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Karima Cherouali
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Safa Aouinti
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Amar El Hamwi
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Alexandre Albani
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Merouane Elazami Elhassani
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Benjamin Viart
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Agathe Goret
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Anna Tran
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Gaoussou Sanou
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Maël Rollin
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Patrice Duroux
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Sofia Kossida
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| |
Collapse
|
8
|
Lefranc MP, Lefranc G. Immunoglobulins or Antibodies: IMGT ® Bridging Genes, Structures and Functions. Biomedicines 2020; 8:E319. [PMID: 32878258 PMCID: PMC7555362 DOI: 10.3390/biomedicines8090319] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
IMGT®, the international ImMunoGeneTics® information system founded in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), marked the advent of immunoinformatics, a new science at the interface between immunogenetics and bioinformatics. For the first time, the immunoglobulin (IG) or antibody and T cell receptor (TR) genes were officially recognized as 'genes' as well as were conventional genes. This major breakthrough has allowed the entry, in genomic databases, of the IG and TR variable (V), diversity (D) and joining (J) genes and alleles of Homo sapiens and of other jawed vertebrate species, based on the CLASSIFICATION axiom. The second major breakthrough has been the IMGT unique numbering and the IMGT Collier de Perles for the V and constant (C) domains of the IG and TR and other proteins of the IG superfamily (IgSF), based on the NUMEROTATION axiom. IMGT-ONTOLOGY axioms and concepts bridge genes, sequences, structures and functions, between biological and computational spheres in the IMGT® system (Web resources, databases and tools). They provide the IMGT Scientific chart rules to identify, to describe and to analyse the IG complex molecular data, the huge diversity of repertoires, the genetic (alleles, allotypes, CNV) polymorphisms, the IG dual function (paratope/epitope, effector properties), the antibody humanization and engineering.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, The International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, Université de Montpellier UM, Centre National de la Recherche Scientifique CNRS, UMR 9002 CNRS-UM, 141 Rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| | - Gérard Lefranc
- IMGT, The International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, Université de Montpellier UM, Centre National de la Recherche Scientifique CNRS, UMR 9002 CNRS-UM, 141 Rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| |
Collapse
|
9
|
Magadan S, Krasnov A, Hadi-Saljoqi S, Afanasyev S, Mondot S, Lallias D, Castro R, Salinas I, Sunyer O, Hansen J, Koop BF, Lefranc MP, Boudinot P. Standardized IMGT® Nomenclature of Salmonidae IGH Genes, the Paradigm of Atlantic Salmon and Rainbow Trout: From Genomics to Repertoires. Front Immunol 2019; 10:2541. [PMID: 31798572 PMCID: PMC6866254 DOI: 10.3389/fimmu.2019.02541] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
In teleost fish as in mammals, humoral adaptive immunity is based on B lymphocytes expressing highly diverse immunoglobulins (IG). During B cell differentiation, IG loci are subjected to genomic rearrangements of V, D, and J genes, producing a unique antigen receptor expressed on the surface of each lymphocyte. During the course of an immune response to infections or immunizations, B cell clones specific of epitopes from the immunogen are expanded and activated, leading to production of specific antibodies. Among teleost fish, salmonids comprise key species for aquaculture. Rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) are especially important from a commercial point of view and have emerged as critical models for fish immunology. The growing interest to capture accurate and comprehensive antibody responses against common pathogens and vaccines has resulted in recent efforts to sequence the IG repertoire in these species. In this context, a unified and standardized nomenclature of salmonid IG heavy chain (IGH) genes is urgently required, to improve accuracy of annotation of adaptive immune receptor repertoire dataset generated by high-throughput sequencing (AIRRseq) and facilitate comparisons between studies and species. Interestingly, the assembly of salmonids IGH genomic sequences is challenging due to the presence of two large size duplicated IGH loci and high numbers of IG genes and pseudogenes. We used data available for Atlantic salmon to establish an IMGT standardized nomenclature of IGH genes in this species and then applied the IMGT rules to the rainbow trout IGH loci to set up a nomenclature, which takes into account the specificities of Salmonid loci. This unique, consistent nomenclature for Salmonid IGH genes was then used to construct IMGT sequence reference directories allowing accurate annotation of AIRRseq data. The complex issues raised by the genetic diversity of salmon and trout strains are discussed in the context of IG repertoire annotation.
Collapse
Affiliation(s)
- Susana Magadan
- Immunology Laboratory, Biomedical Research Center, University of Vigo, Vigo, Spain
- Department of Biology, Center of Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States
| | - Aleksei Krasnov
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | - Saida Hadi-Saljoqi
- IMGT®, The International ImMunoGeneTics Information System® (IMGT), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), CNRS, University of Montpellier, Montpellier, France
| | - Sergey Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Stanislas Mondot
- MICALIS, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Delphine Lallias
- Génétique Animale et Biologie Intégrative (GABI), INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rosario Castro
- Virologie et Immunologie Moléculaires (VIM), Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Irene Salinas
- Department of Biology, Center of Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States
| | - Oriol Sunyer
- Pathobiology Department, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Hansen
- Western Fisheries Research Center, U.S. Geological Survey, Seattle, WA, United States
| | - Ben F. Koop
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System® (IMGT), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), CNRS, University of Montpellier, Montpellier, France
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires (VIM), Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
10
|
Lefranc MP, Lefranc G. IMGT ® and 30 Years of Immunoinformatics Insight in Antibody V and C Domain Structure and Function. Antibodies (Basel) 2019; 8:E29. [PMID: 31544835 PMCID: PMC6640715 DOI: 10.3390/antib8020029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
At the 10th Human Genome Mapping (HGM10) Workshop, in New Haven, for the first time, immunoglobulin (IG) or antibody and T cell receptor (TR) variable (V), diversity (D), joining (J), and constant (C) genes were officially recognized as 'genes', as were the conventional genes. Under these HGM auspices, IMGT®, the international ImMunoGeneTics information system®, was created in June 1989 at Montpellier (University of Montpellier and CNRS). The creation of IMGT® marked the birth of immunoinformatics, a new science, at the interface between immunogenetics and bioinformatics. The accuracy and the consistency between genes and alleles, sequences, and three-dimensional (3D) structures are based on the IMGT Scientific chart rules generated from the IMGT-ONTOLOGY axioms and concepts: IMGT standardized keywords (IDENTIFICATION), IMGT gene and allele nomenclature (CLASSIFICATION), IMGT standardized labels (DESCRIPTION), IMGT unique numbering and IMGT Collier de Perles (NUMEROTATION). These concepts provide IMGT® immunoinformatics insights for antibody V and C domain structure and function, used for the standardized description in IMGT® web resources, databases and tools, immune repertoires analysis, single cell and/or high-throughput sequencing (HTS, NGS), antibody humanization, and antibody engineering in relation with effector properties.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, the international ImMunoGeneTics information system®, University of Montpellier, CNRS, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS-UM, 141 rue de la Cardonille, 34396 Montpellier CEDEX 5, France.
| | - Gérard Lefranc
- IMGT®, the international ImMunoGeneTics information system®, University of Montpellier, CNRS, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS-UM, 141 rue de la Cardonille, 34396 Montpellier CEDEX 5, France.
| |
Collapse
|
11
|
Fichtner AS, Karunakaran MM, Starick L, Truman RW, Herrmann T. The Armadillo ( Dasypus novemcinctus): A Witness but Not a Functional Example for the Emergence of the Butyrophilin 3/Vγ9Vδ2 System in Placental Mammals. Front Immunol 2018. [PMID: 29527206 PMCID: PMC5829056 DOI: 10.3389/fimmu.2018.00265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
1–5% of human blood T cells are Vγ9Vδ2 T cells whose T cell receptor (TCR) contain a TRGV9/TRGJP rearrangement and a TRDV2 comprising Vδ2-chain. They respond to phosphoantigens (PAgs) like isopentenyl pyrophosphate or (E)-4-hydroxy-3-methyl-but-2-enyl-pyrophosphate (HMBPP) in a butyrophilin 3 (BTN3)-dependent manner and may contribute to the control of mycobacterial infections. These cells were thought to be restricted to primates, but we demonstrated by analysis of genomic databases that TRGV9, TRDV2, and BTN3 genes coevolved and emerged together with placental mammals. Furthermore, we identified alpaca (Vicugna pacos) as species with typical Vγ9Vδ2 TCR rearrangements and currently aim to directly identify Vγ9Vδ2 T cells and BTN3. Other candidates to study this coevolution are the bottlenose dolphin (Tursiops truncatus) and the nine-banded armadillo (Dasypus novemcinctus) with genomic sequences encoding open reading frames for TRGV9, TRDV2, and the extracellular part of BTN3. Dolphins have been shown to express Vγ9- and Vδ2-like TCR chains and possess a predicted BTN3-like gene homologous to human BTN3A3. The other candidate, the armadillo, is of medical interest since it serves as a natural reservoir for Mycobacterium leprae. In this study, we analyzed the armadillo genome and found evidence for multiple non-functional BTN3 genes including genomic context which closely resembles the organization of the human, alpaca, and dolphin BTN3A3 loci. However, no BTN3 transcript could be detected in armadillo cDNA. Additionally, attempts to identify a functional TRGV9/TRGJP rearrangement via PCR failed. In contrast, complete TRDV2 gene segments preferentially rearranged with a TRDJ4 homolog were cloned and co-expressed with a human Vγ9-chain in murine hybridoma cells. These cells could be stimulated by immobilized anti-mouse CD3 antibody but not with human RAJI-RT1Bl cells and HMBPP. So far, the lack of expression of TRGV9 rearrangements and BTN3 renders the armadillo an unlikely candidate species for PAg-reactive Vγ9Vδ2 T cells. This is in line with the postulated coevolution of the three genes, where occurrence of Vγ9Vδ2 TCRs coincides with a functional BTN3 molecule.
Collapse
Affiliation(s)
- Alina Suzann Fichtner
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | | | - Lisa Starick
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Richard W Truman
- National Hansen's Disease Program, Louisiana State University, Baton Rouge, LA, United States
| | - Thomas Herrmann
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Abstract
IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS) to manage the huge diversity of the antigen receptors, immunoglobulins (IG) or antibodies, and T cell receptors (TR). The founding of IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. Standardized sequence and structure analysis of antibody using IMGT® databases and tools allow one to bridge, for the first time, the gap between antibody sequences and three-dimensional (3D) structures. This is achieved through the IMGT Scientific chart rules, based on the IMGT-ONTOLOGY concepts of classification (IMGT gene and allele nomenclature), description (IMGT standardized labels), and numerotation (IMGT unique numbering and IMGT Collier de Perles). IMGT® is acknowledged as the global reference for immunogenetics and immunoinformatics, and its standards are particularly useful for antibody engineering and humanization. IMGT® databases for antibody nucleotide sequences and genes include IMGT/LIGM-DB and IMGT/GENE-DB, respectively, and nucleotide sequence analysis is performed by the IMGT/V-QUEST and IMGT/JunctionAnalysis tools and for NGS by IMGT/HighV-QUEST. In this chapter, we focus on IMGT® databases and tools for amino acid sequences, two-dimensional (2D) and three-dimensional (3D) structures: the IMGT/DomainGapAlign and IMGT Collier de Perles tools and the IMGT/2Dstructure-DB and IMGT/3Dstructure-DB database. IMGT/mAb-DB provides the query interface for monoclonal antibodies (mAb), fusion proteins for immune applications (FPIA), and composite proteins for clinical applications (CPCA) and related proteins of interest (RPI) and links to the proposed and recommended lists of the World Health Organization International Nonproprietary Name (WHO INN) programme, to IMGT/2Dstructure-DB for amino acid sequences, and to IMGT/3Dstructure-DB and its associated tools (IMGT/StructuralQuery, IMGT/DomainSuperimpose) for crystallized antibodies.
Collapse
|
13
|
Glanville J, D'Angelo S, Khan TA, Reddy ST, Naranjo L, Ferrara F, Bradbury ARM. Deep sequencing in library selection projects: what insight does it bring? Curr Opin Struct Biol 2016; 33:146-60. [PMID: 26451649 DOI: 10.1016/j.sbi.2015.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/19/2015] [Accepted: 09/17/2015] [Indexed: 11/17/2022]
Abstract
High throughput sequencing is poised to change all aspects of the way antibodies and other binders are discovered and engineered. Millions of available sequence reads provide an unprecedented sampling depth able to guide the design and construction of effective, high quality naïve libraries containing tens of billions of unique molecules. Furthermore, during selections, high throughput sequencing enables quantitative tracing of enriched clones and position-specific guidance to amino acid variation under positive selection during antibody engineering. Successful application of the technologies relies on specific PCR reagent design, correct sequencing platform selection, and effective use of computational tools and statistical measures to remove error, identify antibodies, estimate diversity, and extract signatures of selection from the clone down to individual structural positions. Here we review these considerations and discuss some of the remaining challenges to the widespread adoption of the technology.
Collapse
Affiliation(s)
- J Glanville
- Program in Computational and Systems Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - S D'Angelo
- University of New Mexico Comprehensive Cancer Center, and Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - T A Khan
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - S T Reddy
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - L Naranjo
- Bioscience division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - F Ferrara
- University of New Mexico Comprehensive Cancer Center, and Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - A R M Bradbury
- Bioscience division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
14
|
Dunbar J, Krawczyk K, Leem J, Marks C, Nowak J, Regep C, Georges G, Kelm S, Popovic B, Deane CM. SAbPred: a structure-based antibody prediction server. Nucleic Acids Res 2016; 44:W474-8. [PMID: 27131379 PMCID: PMC4987913 DOI: 10.1093/nar/gkw361] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/24/2016] [Indexed: 01/17/2023] Open
Abstract
SAbPred is a server that makes predictions of the properties of antibodies focusing on their structures. Antibody informatics tools can help improve our understanding of immune responses to disease and aid in the design and engineering of therapeutic molecules. SAbPred is a single platform containing multiple applications which can: number and align sequences; automatically generate antibody variable fragment homology models; annotate such models with estimated accuracy alongside sequence and structural properties including potential developability issues; predict paratope residues; and predict epitope patches on protein antigens. The server is available at http://opig.stats.ox.ac.uk/webapps/sabpred.
Collapse
Affiliation(s)
- James Dunbar
- Department of Statistics, Oxford Protein Informatics Group, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, 82377, Penzberg, Germany
| | - Konrad Krawczyk
- Department of Statistics, Oxford Protein Informatics Group, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Jinwoo Leem
- Department of Statistics, Oxford Protein Informatics Group, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Claire Marks
- Department of Statistics, Oxford Protein Informatics Group, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Jaroslaw Nowak
- Department of Statistics, Oxford Protein Informatics Group, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Cristian Regep
- Department of Statistics, Oxford Protein Informatics Group, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Guy Georges
- Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, 82377, Penzberg, Germany
| | - Sebastian Kelm
- Informatics Department, UCB Pharma, 208 Bath Road, Slough, SL1 3WE, UK
| | - Bojana Popovic
- Antibody Discovery and Protein Engineering, Medimmune Ltd, Granta Park, Cambridge, CB21 6GH, UK
| | - Charlotte M Deane
- Department of Statistics, Oxford Protein Informatics Group, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| |
Collapse
|
15
|
Rasetti-Escargueil C, Avril A, Chahboun S, Tierney R, Bak N, Miethe S, Mazuet C, Popoff MR, Thullier P, Hust M, Pelat T, Sesardic D. Development of human-like scFv-Fc antibodies neutralizing Botulinum toxin serotype B. MAbs 2015; 7:1161-77. [PMID: 26381852 PMCID: PMC4966489 DOI: 10.1080/19420862.2015.1082016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agents by the Centers for Disease Control and Prevention. To date, 7 subtypes of BoNT/B were identified showing that subtypes B1 (16 strains) and B2 (32 strains) constitute the vast majority of BoNT/B strains. Neutralizing antibodies are required for the development of anti-botulism drugs to deal with the potential risk. In this study, macaques (Macaca fascicularis) were immunized with recombinant light chain (LC) or heavy chain (HC) of BoNT/B2, followed by the construction of 2 hyper-immune phage display libraries. The best single-chain variable fragments (scFvs) isolated from each library were selected according to their affinities and cross reactivity with BoNT/B1 toxin subtype. These scFvs against LC and HC were further analyzed by assessing the inhibition of in vitro endopeptidase activity of BoNT/B1 and B2 and neutralization of BoNT/B1 and B2 toxin-induced paralysis in the mouse ex vivo phrenic nerve assay. The antibodies B2–7 (against HC) and BLC3 (against LC) were produced as scFv-Fc, and, when tested individually, neutralized BoNT/B1 and BoNT/B2 in a mouse ex vivo phrenic nerve assay. Whereas only scFv-Fc BLC3 alone protected mice against BoNT/B2-induced paralysis in vivo, when B2–7 and BLC3 were combined they exhibited potent synergistic protection. The present study provided an opportunity to assess the extent of antibody-mediated neutralization of BoNT/B1 and BoNT/B2 subtypes in ex vivo and in vitro assays, and to confirm the benefit of the synergistic effect of antibodies targeting the 2 distinct functional domains of the toxin in vivo. Notably, the framework regions of the most promising antibodies (B2–7 and BLC3) are close to the human germline sequences, which suggest that they may be well tolerated in potential clinical development.
Collapse
Affiliation(s)
- Christine Rasetti-Escargueil
- a Division of Bacteriology; National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency ; Hertfordshire UK
| | - Arnaud Avril
- b Département des Maladies Infectieuses ; Unité Interaction Hôte-Pathogène; Institut de Recherche Biomédicale des Armées (IRBA) ; Brétigny-sur-Orge , France
| | - Siham Chahboun
- b Département des Maladies Infectieuses ; Unité Interaction Hôte-Pathogène; Institut de Recherche Biomédicale des Armées (IRBA) ; Brétigny-sur-Orge , France
| | - Rob Tierney
- a Division of Bacteriology; National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency ; Hertfordshire UK
| | - Nicola Bak
- a Division of Bacteriology; National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency ; Hertfordshire UK
| | - Sebastian Miethe
- c Institut für Biochemie, Biotechnologie und Bioinformatik; Technische Universität Braunschweig ; Braunschweig , Germany
| | - Christelle Mazuet
- d Unité des Bactéries anaérobies et Toxines; Institut Pasteur ; Paris , France
| | - Michel R Popoff
- d Unité des Bactéries anaérobies et Toxines; Institut Pasteur ; Paris , France
| | - Philippe Thullier
- b Département des Maladies Infectieuses ; Unité Interaction Hôte-Pathogène; Institut de Recherche Biomédicale des Armées (IRBA) ; Brétigny-sur-Orge , France
| | - Michael Hust
- c Institut für Biochemie, Biotechnologie und Bioinformatik; Technische Universität Braunschweig ; Braunschweig , Germany
| | - Thibaut Pelat
- b Département des Maladies Infectieuses ; Unité Interaction Hôte-Pathogène; Institut de Recherche Biomédicale des Armées (IRBA) ; Brétigny-sur-Orge , France
| | - Dorothea Sesardic
- a Division of Bacteriology; National Institute for Biological Standards and Control (NIBSC), a centre of Medicines and Healthcare products Regulatory Agency ; Hertfordshire UK
| |
Collapse
|
16
|
Isolation of nanomolar scFvs of non-human primate origin, cross-neutralizing botulinum neurotoxins A1 and A2 by targeting their heavy chain. BMC Biotechnol 2015; 15:86. [PMID: 26382731 PMCID: PMC4574468 DOI: 10.1186/s12896-015-0206-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 09/11/2015] [Indexed: 12/14/2022] Open
Abstract
Background Botulism is a naturally occurring disease, mainly caused by the ingestion of food contaminated by the botulinum neurotoxins (BoNTs). Botulinum neurotoxins are the most lethal. They are classified among the six major biological warfare agents by the Centers for Disease Control. BoNTs act on the cholinergic motoneurons, where they cleave proteins implicated in acetylcholine vesicle exocytosis. This exocytosis inhibition induces a flaccid paralysis progressively affecting all the muscles and generally engendering a respiratory distress. BoNTs are also utilized in medicine, mainly for the treatment of neuromuscular disorders, preventing large scale vaccination. Botulism specific treatment requires injections of antitoxins, usually of equine origin and thus poorly tolerated. Therefore, development of human or human-like neutralizing antibodies is of a major interest, and it is the subject of the European framework project called “AntiBotABE”. Results In this study, starting from a macaque immunized with the recombinant heavy chain of BoNT/A1 (BoNT/A1-HC), an immune antibody phage-display library was generated and antibody fragments (single chain Fragment variable) with nanomolar affinity were isolated and further characterized. The neutralization capacities of these scFvs were analyzed in the mouse phrenic nerve-hemidiaphragm assay. Conclusions After a three-round panning, 24 antibody fragments with affinity better than 10 nM were isolated. Three of them neutralized BoNT/A1 efficiently and two cross-neutralized BoNT/A1 and BoNT/A2 subtypes in the mouse phrenic nerve-hemidiaphragm assay. These are the first monoclonal human-like antibodies cross-neutralizing both BoNT/A1 and BoNT/A2. The antibody A1HC38 was selected for further development, and could be clinically developed for the prophylaxis and treatment of botulism. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0206-0) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Lefranc MP, Giudicelli V, Duroux P, Jabado-Michaloud J, Folch G, Aouinti S, Carillon E, Duvergey H, Houles A, Paysan-Lafosse T, Hadi-Saljoqi S, Sasorith S, Lefranc G, Kossida S. IMGT®, the international ImMunoGeneTics information system® 25 years on. Nucleic Acids Res 2015; 43:D413-22. [PMID: 25378316 PMCID: PMC4383898 DOI: 10.1093/nar/gku1056] [Citation(s) in RCA: 389] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022] Open
Abstract
IMGT(®), the international ImMunoGeneTics information system(®)(http://www.imgt.org) is the global reference in immunogenetics and immunoinformatics. By its creation in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), IMGT(®) marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT(®) is specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH) and proteins of the IgSF and MhSF superfamilies. IMGT(®) is built on the IMGT-ONTOLOGY axioms and concepts, which bridged the gap between genes, sequences and 3D structures. The concepts include the IMGT(®) standardized keywords (identification), IMGT(®) standardized labels (description), IMGT(®) standardized nomenclature (classification), IMGT unique numbering and IMGT Colliers de Perles (numerotation). IMGT(®) comprises 7 databases, 17 online tools and 15,000 pages of web resources, and provides a high-quality and integrated system for analysis of the genomic and expressed IG and TR repertoire of the adaptive immune responses, including NGS high-throughput data. Tools and databases are used in basic, veterinary and medical research, in clinical applications (mutation analysis in leukemia and lymphoma) and in antibody engineering and humanization. The IMGT/mAb-DB interface was developed for therapeutic antibodies and fusion proteins for immunological applications (FPIA). IMGT(®) is freely available at http://www.imgt.org.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Véronique Giudicelli
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Patrice Duroux
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Joumana Jabado-Michaloud
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Géraldine Folch
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Safa Aouinti
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Emilie Carillon
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Hugo Duvergey
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Amélie Houles
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Typhaine Paysan-Lafosse
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Saida Hadi-Saljoqi
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Souphatta Sasorith
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Gérard Lefranc
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| | - Sofia Kossida
- IMGT, the international ImMunoGeneTics information system, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire LIGM, UPR CNRS 1142, Institut de Génétique Humaine IGH, 141 rue de la Cardonille, Montpellier, 34396 cedex 5, France
| |
Collapse
|
18
|
Lefranc MP. Immunoglobulins: 25 years of immunoinformatics and IMGT-ONTOLOGY. Biomolecules 2014; 4:1102-39. [PMID: 25521638 PMCID: PMC4279172 DOI: 10.3390/biom4041102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 11/17/2022] Open
Abstract
IMGT®, the international ImMunoGeneTics information system® (CNRS and Montpellier University) is the global reference in immunogenetics and immunoinformatics. By its creation in 1989, IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT® is specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH), and IgSF and MhSF superfamilies. IMGT® has been built on the IMGT-ONTOLOGY axioms and concepts, which bridged the gap between genes, sequences and three-dimensional (3D) structures. The concepts include the IMGT® standardized keywords (identification), IMGT® standardized labels (description), IMGT® standardized nomenclature (classification), IMGT unique numbering and IMGT Colliers de Perles (numerotation). IMGT® comprises seven databases, 15,000 pages of web resources and 17 tools. IMGT® tools and databases provide a high-quality analysis of the IG from fish to humans, for basic, veterinary and medical research, and for antibody engineering and humanization. They include, as examples: IMGT/V-QUEST and IMGT/JunctionAnalysis for nucleotide sequence analysis and their high-throughput version IMGT/HighV-QUEST for next generation sequencing, IMGT/DomainGapAlign for amino acid sequence analysis of IG domains, IMGT/3Dstructure-DB for 3D structures, contact analysis and paratope/epitope interactions of IG/antigen complexes, and the IMGT/mAb-DB interface for therapeutic antibodies and fusion proteins for immunological applications (FPIA).
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, the international ImMunoGenetics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UPR CNRS 1142, Montpellier University, 141 rue de la Cardonille, 34396 Montpellier cedex 5, France.
| |
Collapse
|
19
|
Shirai H, Prades C, Vita R, Marcatili P, Popovic B, Xu J, Overington JP, Hirayama K, Soga S, Tsunoyama K, Clark D, Lefranc MP, Ikeda K. Antibody informatics for drug discovery. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2002-2015. [PMID: 25110827 DOI: 10.1016/j.bbapap.2014.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 10/24/2022]
Abstract
More and more antibody therapeutics are being approved every year, mainly due to their high efficacy and antigen selectivity. However, it is still difficult to identify the antigen, and thereby the function, of an antibody if no other information is available. There are obstacles inherent to the antibody science in every project in antibody drug discovery. Recent experimental technologies allow for the rapid generation of large-scale data on antibody sequences, affinity, potency, structures, and biological functions; this should accelerate drug discovery research. Therefore, a robust bioinformatic infrastructure for these large data sets has become necessary. In this article, we first identify and discuss the typical obstacles faced during the antibody drug discovery process. We then summarize the current status of three sub-fields of antibody informatics as follows: (i) recent progress in technologies for antibody rational design using computational approaches to affinity and stability improvement, as well as ab-initio and homology-based antibody modeling; (ii) resources for antibody sequences, structures, and immune epitopes and open drug discovery resources for development of antibody drugs; and (iii) antibody numbering and IMGT. Here, we review "antibody informatics," which may integrate the above three fields so that bridging the gaps between industrial needs and academic solutions can be accelerated. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Hiroki Shirai
- Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Catherine Prades
- Global Biotherapeutics, Bioinformatics, Sanofi-Aventis Recherche & Développement, Centre de recherche Vitry-sur-Seine, 13, quai Jules Guesde, BP 14, 94403 Vitry-sur-Seine Cedex, France
| | - Randi Vita
- Immune Epitope Database and Analysis Project, La Jolla Institute for Allergy & Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Paolo Marcatili
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Anker Engelunds Vej 1, 2800 Lyngby, Denmark
| | - Bojana Popovic
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Jianqing Xu
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - John P Overington
- The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kazunori Hirayama
- Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Shinji Soga
- Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Kazuhisa Tsunoyama
- Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Dominic Clark
- The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Marie-Paule Lefranc
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Université Montpellier 2, Institut de Génétique Humaine, UPR CNRS 1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Kazuyoshi Ikeda
- The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| |
Collapse
|
20
|
Lefranc MP. Immunoglobulin and T Cell Receptor Genes: IMGT(®) and the Birth and Rise of Immunoinformatics. Front Immunol 2014; 5:22. [PMID: 24600447 PMCID: PMC3913909 DOI: 10.3389/fimmu.2014.00022] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/15/2014] [Indexed: 11/13/2022] Open
Abstract
IMGT(®), the international ImMunoGeneTics information system(®) (1), (CNRS and Université Montpellier 2) is the global reference in immunogenetics and immunoinformatics. By its creation in 1989, IMGT(®) marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT(®) is specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH), and proteins of the IgSF and MhSF superfamilies. IMGT(®) has been built on the IMGT-ONTOLOGY axioms and concepts, which bridged the gap between genes, sequences, and three-dimensional (3D) structures. The concepts include the IMGT(®) standardized keywords (concepts of identification), IMGT(®) standardized labels (concepts of description), IMGT(®) standardized nomenclature (concepts of classification), IMGT unique numbering, and IMGT Colliers de Perles (concepts of numerotation). IMGT(®) comprises seven databases, 15,000 pages of web resources, and 17 tools, and provides a high-quality and integrated system for the analysis of the genomic and expressed IG and TR repertoire of the adaptive immune responses. Tools and databases are used in basic, veterinary, and medical research, in clinical applications (mutation analysis in leukemia and lymphoma) and in antibody engineering and humanization. They include, for example IMGT/V-QUEST and IMGT/JunctionAnalysis for nucleotide sequence analysis and their high-throughput version IMGT/HighV-QUEST for next-generation sequencing (500,000 sequences per batch), IMGT/DomainGapAlign for amino acid sequence analysis of IG and TR variable and constant domains and of MH groove domains, IMGT/3Dstructure-DB for 3D structures, contact analysis and paratope/epitope interactions of IG/antigen and TR/peptide-MH complexes and IMGT/mAb-DB interface for therapeutic antibodies and fusion proteins for immune applications (FPIA).
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- The International ImMunoGenetics Information System (IMGT), Laboratoire d’ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine, UPR CNRS, Université Montpellier 2, Montpellier, France
| |
Collapse
|
21
|
Pantazes RJ, Maranas CD. MAPs: a database of modular antibody parts for predicting tertiary structures and designing affinity matured antibodies. BMC Bioinformatics 2013; 14:168. [PMID: 23718826 PMCID: PMC3687570 DOI: 10.1186/1471-2105-14-168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The de novo design of a novel protein with a particular function remains a formidable challenge with only isolated and hard-to-repeat successes to date. Due to their many structurally conserved features, antibodies are a family of proteins amenable to predictable rational design. Design algorithms must consider the structural diversity of possible naturally occurring antibodies. The human immune system samples this design space (2 1012) by randomly combining variable, diversity, and joining genes in a process known as V-(D)-J recombination. DESCRIPTION By analyzing structural features found in affinity matured antibodies, a database of Modular Antibody Parts (MAPs) analogous to the variable, diversity, and joining genes has been constructed for the prediction of antibody tertiary structures. The database contains 929 parts constructed from an analysis of 1168 human, humanized, chimeric, and mouse antibody structures and encompasses all currently observed structural diversity of antibodies. CONCLUSIONS The generation of 260 antibody structures shows that the MAPs database can be used to reliably predict antibody tertiary structures with an average all-atom RMSD of 1.9 Å. Using the broadly neutralizing anti-influenza antibody CH65 and anti-HIV antibody 4E10 as examples, promising starting antibodies for affinity maturation are identified and amino acid changes are traced as antibody affinity maturation occurs.
Collapse
|
22
|
Vlachakis D, Feidakis C, Megalooikonomou V, Kossida S. IMGT/Collier-de-Perles: a two-dimensional visualization tool for amino acid domain sequences. Theor Biol Med Model 2013; 10:14. [PMID: 23432825 PMCID: PMC3621776 DOI: 10.1186/1742-4682-10-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 02/16/2013] [Indexed: 11/23/2022] Open
Abstract
IMGT/Collier-de-Perles is a tool that allows the user to analyze and draw two-dimensional graphical representations (or IMGT Collier de Perles) of protein domains (e.g., hydropathy plots). The IMGT/Collier-de-Perles specializes in the area of immunoglobulins (IG) or antibodies, T cell receptors (TR) and major histocompatibility (MH) of human and other vertebrate species as well as other proteins of the immunoglobulin superfamily (IgSF) and of the major histocompatibility superfamily (MhSF) and related proteins of the immune system of vertebrates and invertebrates.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Bioinformatics & Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, Athens 11527, Greece
| | | | | | | |
Collapse
|