1
|
Haeri M, Zhuo X, Haeri M, Knox BE. Retinal tissue preparation for high-resolution live imaging of photoreceptors expressing multiple transgenes. MethodsX 2018; 5:1140-1147. [PMID: 30302320 PMCID: PMC6174271 DOI: 10.1016/j.mex.2018.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/09/2018] [Indexed: 11/30/2022] Open
Abstract
Live imaging has become the favorite method in recent years to study the protein transport, localization and dynamics in live cells. Protein transport is extremely essential for proper function of photoreceptors. Aberration in the proper transport of proteins gives rise to the loss of photoreceptor and blindness. On the other hand, the ease of generation of transgenic Xenopus laevis tadpoles and the advantage of high resolution live confocal imaging provide new insight into understanding protein dynamics in photoreceptors. There are several steps for quantifying and visualizing fluorescently tagged proteins in photoreceptors starting with assembly of plasmids, generation of transgenic tadpoles, preparation of retinal tissues, imaging the transgenic photoreceptors and finally analyzing the recorded data. The focus of this manuscript is to describe how to prepare retinal tissues suited for live cell imaging and provide our readers with a tutorial video. We also give a summary of steps leading to a successful experiment that might be designed for imaging the ultrastructures of photoreceptors, the expression of two or more different fluorescently tagged proteins, their localization, distribution, or protein dynamics within photoreceptors. •Retinal tissue live imaging demonstrates the ultrastructures of photoreceptors.•High resolution live confocal imaging provides new insight into understanding the pathophysiology of photoreceptors.
Collapse
Affiliation(s)
- Mohammad Haeri
- Departments of Neuroscience & Physiology, and Ophthalmology, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Pathology & Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Xinming Zhuo
- Departments of Neuroscience & Physiology, and Ophthalmology, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Morteza Haeri
- Department of Chemical & Biomedical Engineering, Syracuse University, Syracuse, NY, United States
| | - Barry E Knox
- Departments of Neuroscience & Physiology, and Ophthalmology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
2
|
Ledford KL, Martinez-De Luna RI, Theisen MA, Rawlins KD, Viczian AS, Zuber ME. Distinct cis-acting regions control six6 expression during eye field and optic cup stages of eye formation. Dev Biol 2017; 426:418-428. [PMID: 28438336 PMCID: PMC5500183 DOI: 10.1016/j.ydbio.2017.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023]
Abstract
The eye field transcription factor, Six6, is essential for both the early (specification and proliferative growth) phase of eye formation, as well as for normal retinal progenitor cell differentiation. While genomic regions driving six6 optic cup expression have been described, the sequences controlling eye field and optic vesicle expression are unknown. Two evolutionary conserved regions 5' and a third 3' to the six6 coding region were identified, and together they faithfully replicate the endogenous X. laevis six6 expression pattern. Transgenic lines were generated and used to determine the onset and expression patterns controlled by the regulatory regions. The conserved 3' region was necessary and sufficient for eye field and optic vesicle expression. In contrast, the two conserved enhancer regions located 5' of the coding sequence were required together for normal optic cup and mature retinal expression. Gain-of-function experiments indicate endogenous six6 and GFP expression in F1 transgenic embryos are similarly regulated in response to candidate trans-acting factors. Importantly, CRISPR/CAS9-mediated deletion of the 3' eye field/optic vesicle enhancer in X. laevis, resulted in a reduction in optic vesicle size. These results identify the cis-acting regions, demonstrate the modular nature of the elements controlling early versus late retinal expression, and identify potential regulators of six6 expression during the early stages of eye formation.
Collapse
Affiliation(s)
- Kelley L Ledford
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Reyna I Martinez-De Luna
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Matthew A Theisen
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Karisa D Rawlins
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Andrea S Viczian
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, United States.
| | - Michael E Zuber
- Department of Ophthalmology and The Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States; Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| |
Collapse
|
3
|
Juárez-Morales JL, Martinez-De Luna RI, Zuber ME, Roberts A, Lewis KE. Zebrafish transgenic constructs label specific neurons in Xenopus laevis spinal cord and identify frog V0v spinal neurons. Dev Neurobiol 2017; 77:1007-1020. [PMID: 28188691 DOI: 10.1002/dneu.22490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022]
Abstract
A correctly functioning spinal cord is crucial for locomotion and communication between body and brain but there are fundamental gaps in our knowledge of how spinal neuronal circuitry is established and functions. To understand the genetic program that regulates specification and functions of this circuitry, we need to connect neuronal molecular phenotypes with physiological analyses. Studies using Xenopus laevis tadpoles have increased our understanding of spinal cord neuronal physiology and function, particularly in locomotor circuitry. However, the X. laevis tetraploid genome and long generation time make it difficult to investigate how neurons are specified. The opacity of X. laevis embryos also makes it hard to connect functional classes of neurons and the genes that they express. We demonstrate here that Tol2 transgenic constructs using zebrafish enhancers that drive expression in specific zebrafish spinal neurons label equivalent neurons in X. laevis and that the incorporation of a Gal4:UAS amplification cassette enables cells to be observed in live X. laevis tadpoles. This technique should enable the molecular phenotypes, morphologies and physiologies of distinct X. laevis spinal neurons to be examined together in vivo. We have used an islet1 enhancer to label Rohon-Beard sensory neurons and evx enhancers to identify V0v neurons, for the first time, in X. laevis spinal cord. Our work demonstrates the homology of spinal cord circuitry in zebrafish and X. laevis, suggesting that future work could combine their relative strengths to elucidate a more complete picture of how vertebrate spinal cord neurons are specified, and function to generate behavior. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1007-1020, 2017.
Collapse
Affiliation(s)
- José L Juárez-Morales
- Department of Biology, Syracuse University, 107 College Place, Syracuse, New York, 13244.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - Reyna I Martinez-De Luna
- The Center for Vision Research, Department of Ophthalmology, SUNY Upstate Medical University, Institute for Human Performance, 505 Irving Ave. Syracuse, New York, 13210
| | - Michael E Zuber
- The Center for Vision Research, Department of Ophthalmology, SUNY Upstate Medical University, Institute for Human Performance, 505 Irving Ave. Syracuse, New York, 13210
| | - Alan Roberts
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Katharine E Lewis
- Department of Biology, Syracuse University, 107 College Place, Syracuse, New York, 13244
| |
Collapse
|
4
|
Najafi M, Calvert PD. Measurements of rhodopsin diffusion within signaling membrane microcompartments in live photoreceptors. Methods Mol Biol 2015; 1271:309-23. [PMID: 25697532 DOI: 10.1007/978-1-4939-2330-4_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
High-resolution multiphoton imaging of live cells has become an invaluable method to study protein dynamics in highly compartmentalized subcellular environments. Here we describe procedures that we recently developed to quantify rhodopsin mobility within and between retinal rod photoreceptor light signaling microcompartments, the disc membrane lobules, using multiphoton fluorescence relaxation after photoconversion.
Collapse
Affiliation(s)
- Mehdi Najafi
- Department of Ophthalmology and the Center for Vision Research, State University of New York Upstate Medical University, Syracuse, NY, USA
| | | |
Collapse
|
5
|
Zhuo X, Haeri M, Solessio E, Knox BE. An inducible expression system to measure rhodopsin transport in transgenic Xenopus rod outer segments. PLoS One 2013; 8:e82629. [PMID: 24349323 PMCID: PMC3857830 DOI: 10.1371/journal.pone.0082629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/25/2013] [Indexed: 01/25/2023] Open
Abstract
We developed an inducible transgene expression system in Xenopus rod photoreceptors. Using a transgene containing mCherry fused to the carboxyl terminus of rhodopsin (Rho-mCherry), we characterized the displacement of rhodopsin (Rho) from the base to the tip of rod outer segment (OS) membranes. Quantitative confocal imaging of live rods showed very tight regulation of Rho-mCherry expression, with undetectable expression in the absence of dexamethasone (Dex) and an average of 16.5 µM of Rho-mCherry peak concentration after induction for several days (equivalent to >150-fold increase). Using repetitive inductions, we found the axial rate of disk displacement to be 1.0 µm/day for tadpoles at 20 °C in a 12 h dark /12 h light lighting cycle. The average distance to peak following Dex addition was 3.2 µm, which is equivalent to ~3 days. Rods treated for longer times showed more variable expression patterns, with most showing a reduction in Rho-mCherry concentration after 3 days. Using a simple model, we find that stochastic variation in transgene expression can account for the shape of the induction response.
Collapse
Affiliation(s)
- Xinming Zhuo
- Departments of Neuroscience and Physiology, Biochemistry and Molecular Biology and Ophthalmology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Mohammad Haeri
- Departments of Neuroscience and Physiology, Biochemistry and Molecular Biology and Ophthalmology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Eduardo Solessio
- Departments of Neuroscience and Physiology, Biochemistry and Molecular Biology and Ophthalmology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Barry E. Knox
- Departments of Neuroscience and Physiology, Biochemistry and Molecular Biology and Ophthalmology, SUNY Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Regulation of rhodopsin-eGFP distribution in transgenic xenopus rod outer segments by light. PLoS One 2013; 8:e80059. [PMID: 24260336 PMCID: PMC3829889 DOI: 10.1371/journal.pone.0080059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/08/2013] [Indexed: 11/19/2022] Open
Abstract
The rod outer segment (OS), comprised of tightly stacked disk membranes packed with rhodopsin, is in a dynamic equilibrium governed by a diurnal rhythm with newly synthesized membrane inserted at the OS base balancing membrane loss from the distal tip via disk shedding. Using transgenic Xenopus and live cell confocal imaging, we found OS axial variation of fluorescence intensity in cells expressing a fluorescently tagged rhodopsin transgene. There was a light synchronized fluctuation in intensity, with higher intensity in disks formed at night and lower intensity for those formed during the day. This fluctuation was absent in constant light or dark conditions. There was also a slow modulation of the overall expression level that was not synchronized with the lighting cycle or between cells in the same retina. The axial variations of other membrane-associated fluorescent proteins, eGFP-containing two geranylgeranyl acceptor sites and eGFP fused to the transmembrane domain of syntaxin, were greatly reduced or not detectable, respectively. In acutely light-adapted rods, an arrestin-eGFP fusion protein also exhibited axial variation. Both the light-sensitive Rho-eGFP and arrestin-eGFP banding were in phase with the previously characterized birefringence banding (Kaplan, Invest. Ophthalmol. Vis. Sci. 21, 395–402 1981). In contrast, endogenous rhodopsin did not exhibit such axial variation. Thus, there is an axial inhomogeneity in membrane composition or structure, detectable by the rhodopsin transgene density distribution and regulated by the light cycle, implying a light-regulated step for disk assembly in the OS. The impact of these results on the use of chimeric proteins with rhodopsin fused to fluorescent proteins at the carboxyl terminus is discussed.
Collapse
|
7
|
Loots GG, Bergmann A, Hum NR, Oldenburg CE, Wills AE, Hu N, Ovcharenko I, Harland RM. Interrogating transcriptional regulatory sequences in Tol2-mediated Xenopus transgenics. PLoS One 2013; 8:e68548. [PMID: 23874664 PMCID: PMC3713029 DOI: 10.1371/journal.pone.0068548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/30/2013] [Indexed: 12/13/2022] Open
Abstract
Identifying gene regulatory elements and their target genes in vertebrates remains a significant challenge. It is now recognized that transcriptional regulatory sequences are critical in orchestrating dynamic controls of tissue-specific gene expression during vertebrate development and in adult tissues, and that these elements can be positioned at great distances in relation to the promoters of the genes they control. While significant progress has been made in mapping DNA binding regions by combining chromatin immunoprecipitation and next generation sequencing, functional validation remains a limiting step in improving our ability to correlate in silico predictions with biological function. We recently developed a computational method that synergistically combines genome-wide gene-expression profiling, vertebrate genome comparisons, and transcription factor binding-site analysis to predict tissue-specific enhancers in the human genome. We applied this method to 270 genes highly expressed in skeletal muscle and predicted 190 putative cis-regulatory modules. Furthermore, we optimized Tol2 transgenic constructs in Xenopus laevis to interrogate 20 of these elements for their ability to function as skeletal muscle-specific transcriptional enhancers during embryonic development. We found 45% of these elements expressed only in the fast muscle fibers that are oriented in highly organized chevrons in the Xenopus laevis tadpole. Transcription factor binding site analysis identified >2 Mef2/MyoD sites within ∼200 bp regions in 6 of the validated enhancers, and systematic mutagenesis of these sites revealed that they are critical for the enhancer function. The data described herein introduces a new reporter system suitable for interrogating tissue-specific cis-regulatory elements which allows monitoring of enhancer activity in real time, throughout early stages of embryonic development, in Xenopus.
Collapse
Affiliation(s)
- Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Haeri M, Knox BE. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes. PLoS One 2012; 7:e30101. [PMID: 22276148 PMCID: PMC3261860 DOI: 10.1371/journal.pone.0030101] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/09/2011] [Indexed: 11/19/2022] Open
Abstract
Mutations in rhodopsin cause retinitis pigmentosa in humans and retinal degeneration in a multitude of other animals. We utilized high-resolution live imaging of the large rod photoreceptors from transgenic frogs (Xenopus) to compare the properties of fluorescently tagged rhodopsin, Rho-EGFP, and RhoP23H-EGFP. The mutant was abnormally distributed both in the inner and outer segments (OS), accumulating in the OS to a concentration of ∼0.1% compared to endogenous opsin. RhoP23H-EGFP formed dense fluorescent foci, with concentrations of mutant protein up to ten times higher than other regions. Wild-type transgenic Rho-EGFP did not concentrate in OS foci when co-expressed in the same rod with RhoP23H-EGFP. Outer segment regions containing fluorescent foci were refractory to fluorescence recovery after photobleaching, while foci in the inner segment exhibited recovery kinetics similar to OS regions without foci and Rho-EGFP. The RhoP23H-EGFP foci were often in older, more distal OS disks. Electron micrographs of OS revealed abnormal disk membranes, with the regular disk bilayers broken into vesiculotubular structures. Furthermore, we observed similar OS disturbances in transgenic mice expressing RhoP23H, suggesting such structures are a general consequence of mutant expression. Together these results show that mutant opsin disrupts OS disks, destabilizing the outer segment possibly via the formation of aggregates. This may render rods susceptible to mechanical injury or compromise OS function, contributing to photoreceptor loss.
Collapse
Affiliation(s)
- Mohammad Haeri
- Center for Vision Research, Departments of Neuroscience and Physiology, Biochemistry and Molecular Biology and Ophthalmology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Barry E. Knox
- Center for Vision Research, Departments of Neuroscience and Physiology, Biochemistry and Molecular Biology and Ophthalmology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|