1
|
Cook LE, Newton AH, Hipsley CA, Pask AJ. Postnatal development in a marsupial model, the fat-tailed dunnart (Sminthopsis crassicaudata; Dasyuromorphia: Dasyuridae). Commun Biol 2021; 4:1028. [PMID: 34475507 PMCID: PMC8413461 DOI: 10.1038/s42003-021-02506-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Marsupials exhibit unique biological features that provide fascinating insights into many aspects of mammalian development. These include their distinctive mode of reproduction, altricial stage at birth, and the associated heterochrony that is required for their crawl to the pouch and teat attachment. Marsupials are also an invaluable resource for mammalian comparative biology, forming a distinct lineage from the extant placental and egg-laying monotreme mammals. Despite their unique biology, marsupial resources are lagging behind those available for placentals. The fat-tailed dunnart (Sminthopsis crassicaudata) is a laboratory based marsupial model, with simple and robust husbandry requirements and a short reproductive cycle making it amenable to experimental manipulations. Here we present a detailed staging series for the fat-tailed dunnart, focusing on their accelerated development of the forelimbs and jaws. This study provides the first skeletal developmental series on S. crassicaudata and provides a fundamental resource for future studies exploring mammalian diversification, development and evolution.
Collapse
Affiliation(s)
- Laura E Cook
- School of Biosciences, University of Melbourne, Parkville, VIC, Australia
| | - Axel H Newton
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Christy A Hipsley
- School of Biosciences, University of Melbourne, Parkville, VIC, Australia
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Sciences, Museums Victoria, Carlton, VIC, Australia
| | - Andrew J Pask
- School of Biosciences, University of Melbourne, Parkville, VIC, Australia.
- Department of Sciences, Museums Victoria, Carlton, VIC, Australia.
| |
Collapse
|
2
|
Wang Q, Li K, Zhang D, Li J, Xu G, Zheng J, Yang N, Qu L. Next-Generation Sequencing Techniques Reveal that Genomic Imprinting Is Absent in Day-Old Gallus gallus domesticus Brains. PLoS One 2015; 10:e0132345. [PMID: 26161857 PMCID: PMC4498732 DOI: 10.1371/journal.pone.0132345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/14/2015] [Indexed: 01/05/2023] Open
Abstract
Genomic imprinting is a phenomenon characterized by parent-of-origin-specific gene expression. While widely documented in viviparous mammals and plants, imprinting in oviparous birds remains controversial. Because genomic imprinting is temporal- and tissue-specific, we investigated this phenomenon only in the brain tissues of 1-day-old chickens (Gallus gallus). We used next-generation sequencing technology to compare four transcriptomes pooled from 11 chickens, generated from reciprocally crossed families, to the DNA sequences of their parents. Candidate imprinted genes were then selected from these sequence alignments and subjected to verification experiments that excluded all but one SNP. Subsequent experiments performed with two new sets of reciprocally crossed families resulted in the exclusion of that candidate SNP as well. Attempts to find evidence of genomic imprinting from long non-coding RNAs yielded negative results. We therefore conclude that genomic imprinting is absent in the brains of 1-day-old chickens. However, due to the temporal and tissue specificity of imprinting, our results cannot be extended to all growth stages and tissue types.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kaiyang Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Daixi Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junying Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guiyun Xu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
3
|
Wang X, Clark AG. Using next-generation RNA sequencing to identify imprinted genes. Heredity (Edinb) 2014; 113:156-66. [PMID: 24619182 PMCID: PMC4105452 DOI: 10.1038/hdy.2014.18] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/02/2013] [Accepted: 12/19/2013] [Indexed: 12/15/2022] Open
Abstract
Genomic imprinting is manifested as differential allelic expression (DAE) depending on the parent-of-origin. The most direct way to identify imprinted genes is to directly score the DAE in a context where one can identify which parent transmitted each allele. Because many genes display DAE, simply scoring DAE in an individual is not sufficient to identify imprinted genes. In this paper, we outline many technical aspects of a scheme for identification of imprinted genes that makes use of RNA sequencing (RNA-seq) from tissues isolated from F1 offspring derived from the pair of reciprocal crosses. Ideally, the parental lines are from two inbred strains that are not closely related to each other. Aspects of tissue purity, RNA extraction, library preparation and bioinformatic inference of imprinting are all covered. These methods have already been applied in a number of organisms, and one of the most striking results is the evolutionary fluidity with which novel imprinted genes are gained and lost within genomes. The general methodology is also applicable to a wide range of other biological problems that require quantification of allele-specific expression using RNA-seq, such as cis-regulation of gene expression, X chromosome inactivation and random monoallelic expression.
Collapse
Affiliation(s)
- X Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, NY, USA
| | - A G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Post-natal imprinting: evidence from marsupials. Heredity (Edinb) 2014; 113:145-55. [PMID: 24595366 DOI: 10.1038/hdy.2014.10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 12/31/2022] Open
Abstract
Genomic imprinting has been identified in therian (eutherian and marsupial) mammals but not in prototherian (monotreme) mammals. Imprinting has an important role in optimising pre-natal nutrition and growth, and most imprinted genes are expressed and imprinted in the placenta and developing fetus. In marsupials, however, the placental attachment is short-lived, and most growth and development occurs post-natally, supported by a changing milk composition tailor-made for each stage of development. Therefore there is a much greater demand on marsupial females during post-natal lactation than during pre-natal placentation, so there may be greater selection for genomic imprinting in the mammary gland than in the short-lived placenta. Recent studies in the tammar wallaby confirm the presence of genomic imprinting in nutrient-regulatory genes in the adult mammary gland. This suggests that imprinting may influence infant post-natal growth via the mammary gland as it does pre-natally via the placenta. Similarly, an increasing number of imprinted genes have been implicated in regulating feeding and nurturing behaviour in both the adult and the developing neonate/offspring in mice. Together these studies provide evidence that genomic imprinting is critical for regulating growth and subsequently the survival of offspring not only pre-natally but also post-natally.
Collapse
|