1
|
Aksenova NA, Tcheremenskaia O, Timashev PS, Solovieva AB. Computational prediction of photosensitizers’ toxicity. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The percentage of failures in late pharmaceutical development due to toxicity has increased dramatically over the last decade or so, resulting in increased demand for new methods to rapidly and reliably predict the toxicity of compounds. Today, computational toxicology can be used in every phase of drug discovery and development, from profiling large libraries early on, to predicting off-target effects in the mid-discovery phase, and to assess potential mutagenic impurities in development and degradants as part of life-cycle management. In this study, for the first time, in silico approaches were used to analyze the possible dark toxicity of photosensitive systems based on chlorin e6 and assessed possible toxicity of these compositions. By applying quantitative structure-activity relationship models (QSARs) and modeling adverse outcome pathways (AOPs), a potential toxic effect of water-soluble (chlorin e6 and chlorin e6 aminoamid) and hydrophobic (tetraphenylporphyrin) photosensitizers (PS) was predicted. Particularly, PSs’ protein binding ability, reactivity to form peptide adducts, glutathione conjugation, activity in dendritic cells, and gene expression activity in keratinocytes were explored. Using a metabolism simulator, possible PS metabolites were predicted and their potential toxicity was assessed as well. It was shown that all tested porphyrin PS and their predicted metabolites possess low activity in the mentioned processes and therefore are unable to cause significant adverse toxic effects under dark conditions.
Collapse
Affiliation(s)
- Nadezhda A. Aksenova
- N.N. Semenov Federal Research Center for Chemical Physics, 4 Kosygin st., Moscow, 119991, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya st., Moscow, 119991, Russia
| | - Olga Tcheremenskaia
- Environment and Health department, Instituto Superiore di Sanita, 299 Viale Regina Elena, Rome, 00161, Italy
| | - Peter S. Timashev
- N.N. Semenov Federal Research Center for Chemical Physics, 4 Kosygin st., Moscow, 119991, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya st., Moscow, 119991, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 13, Moscow 119991, Russia
| | - Anna B. Solovieva
- N.N. Semenov Federal Research Center for Chemical Physics, 4 Kosygin st., Moscow, 119991, Russia
| |
Collapse
|
2
|
Rim KT. In silico prediction of toxicity and its applications for chemicals at work. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2020; 12:191-202. [PMID: 32421081 PMCID: PMC7223298 DOI: 10.1007/s13530-020-00056-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 04/14/2023]
Abstract
OBJECTIVE AND METHODS This study reviewed the concept of in silico prediction of chemical toxicity for prevention of occupational cancer and future prospects in workers' health. In this review, a new approach to determine the credibility of in silico predictions with raw data is explored, and the method of determining the confidence level of evaluation based on the credibility of data is discussed. I searched various papers and books related to the in silico prediction of chemical toxicity and carcinogenicity. The intention was to utilize the most recent reports after 2015 regarding in silico prediction. RESULTS AND CONCLUSION The application of in silico methods is increasing with the prediction of toxic risks to human and the environment. The various toxic effects of industrial chemicals have triggered the recognition of the importance of using a combination of in silico models in the risk assessments. In silico occupational exposure models, industrial accidents, and occupational cancers are effectively managed and chemicals evaluated. It is important to identify and manage hazardous substances proactively through the rigorous evaluation of chemicals.
Collapse
Affiliation(s)
- Kyung-Taek Rim
- Chemicals Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, Korea
| |
Collapse
|
3
|
Tcheremenskaia O, Battistelli CL, Giuliani A, Benigni R, Bossa C. In silico approaches for prediction of genotoxic and carcinogenic potential of cosmetic ingredients. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
4
|
Abstract
Modern chemistry foundations were made in between the 18th and 19th centuries and have been extended in 20th century. R&D towards synthetic chemistry was introduced during the 1960s. Development of new molecular drugs from the herbal plants to synthetic chemistry is the fundamental scientific improvement. About 10-14 years are needed to develop a new molecule with an average cost of more than $800 million. Pharmaceutical industries spend the highest percentage of revenues, but the achievement of desired molecular entities into the market is not increasing proportionately. As a result, an approximate of 0.01% of new molecular entities are approved by the FDA. The highest failure rate is due to inadequate efficacy exhibited in Phase II of the drug discovery and development stage. Innovative technologies such as combinatorial chemistry, DNA sequencing, high-throughput screening, bioinformatics, computational drug design, and computer modeling are now utilized in the drug discovery. These technologies can accelerate the success rates in introducing new molecular entities into the market.
Collapse
|
5
|
Bossa C, Benigni R, Tcheremenskaia O, Battistelli CL. (Q)SAR Methods for Predicting Genotoxicity and Carcinogenicity: Scientific Rationale and Regulatory Frameworks. Methods Mol Biol 2018; 1800:447-473. [PMID: 29934905 DOI: 10.1007/978-1-4939-7899-1_20] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Knowledge of the genotoxicity and carcinogenicity potential of chemical substances is one of the key scientific elements able to better protect human health. Genotoxicity assessment is also considered as prescreening of carcinogenicity. The assessment of both endpoints is a fundamental component of national and international legislations, for all types of substances, and has stimulated the development of alternative, nontesting methods. Over the recent decades, much attention has been given to the use and further development of structure-activity relationships-based approaches, to be used in isolation or in combination with in vitro assays for predictive purposes. In this chapter, we briefly introduce the rationale for the main (Q)SAR approaches, and detail the most important regulatory initiatives and frameworks. It appears that the existence and needs of regulatory frameworks stimulate the development of better predictive tools; in turn, this allows the regulators to fine-tune their requirements for an improved defense of human health.
Collapse
Affiliation(s)
- Cecilia Bossa
- Environment and Health Department, Istituto Superiore di Sanità, Roma, Italy.
| | | | - Olga Tcheremenskaia
- Environment and Health Department, Istituto Superiore di Sanità, Roma, Italy
| | | |
Collapse
|
6
|
Janardhan S, John L, Prasanthi M, Poroikov V, Narahari Sastry G. A QSAR and molecular modelling study towards new lead finding: polypharmacological approach to Mycobacterium tuberculosis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:815-832. [PMID: 29183232 DOI: 10.1080/1062936x.2017.1398782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Developing effective inhibitors against Mycobacterium tuberculosis (Mtb) is a challenging task, primarily due to the emergence of resistant strains. In this study, we have proposed and implemented an in silico guided polypharmacological approach, which is expected to be effective against resistant strains by simultaneously inhibiting several potential Mtb drug targets. A combination of pharmacophore and QSAR based virtual screening strategy taking three key targets such as InhA (enoyl-acyl-carrier-protein reductase), GlmU (N-acetyl-glucosamine-1-phosphate uridyltransferase) and DapB (dihydrodipicolinate reductase) have resulted in initial 784 hits from Asinex database of 435,000 compounds. These hits were further subjected to docking with 33 Mtb druggable targets. About 110 potential polypharmacological hits were taken by integrating the aforementioned screening protocols. Further screening was conducted by taking various parameters and properties such as cell permeability, drug-likeness, drug-induced phospholipidosisand structural alerts. A consensus analysis has yielded 59 potential hits that pass through all the filters and can be prioritized for effective drug-resistant tuberculosis. This study proposes about nine potential hits which are expected to be promising molecules, having not only drug-like properties, but also being effective against multiple Mtb targets.
Collapse
Affiliation(s)
- S Janardhan
- a Centre for Molecular Modelling , CSIR-Indian Institute of Chemical Technology , Hyderabad - 500007 , India
| | - L John
- a Centre for Molecular Modelling , CSIR-Indian Institute of Chemical Technology , Hyderabad - 500007 , India
| | - M Prasanthi
- a Centre for Molecular Modelling , CSIR-Indian Institute of Chemical Technology , Hyderabad - 500007 , India
| | - V Poroikov
- b Institute of Biomedical Chemistry , Moscow , 119121 , Russia
| | - G Narahari Sastry
- a Centre for Molecular Modelling , CSIR-Indian Institute of Chemical Technology , Hyderabad - 500007 , India
| |
Collapse
|
7
|
Rezaei Kolahchi A, Khadem Mohtaram N, Pezeshgi Modarres H, Mohammadi MH, Geraili A, Jafari P, Akbari M, Sanati-Nezhad A. Microfluidic-Based Multi-Organ Platforms for Drug Discovery. MICROMACHINES 2016; 7:E162. [PMID: 30404334 PMCID: PMC6189912 DOI: 10.3390/mi7090162] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022]
Abstract
Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality. Recent advances in physiologically-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling, micro- and nanotechnology, and in silico modeling have enabled single- and multi-organ platforms for investigation of new chemical agents and tissue-tissue interactions. This review provides an overview of the principles of designing microfluidic-based organ-on-chip models for drug testing and highlights current state-of-the-art in developing predictive multi-organ models for studying the cross-talk of interconnected organs. We further discuss the challenges associated with establishing a predictive body-on-chip (BOC) model such as the scaling, cell types, the common medium, and principles of the study design for characterizing the interaction of drugs with multiple targets.
Collapse
Affiliation(s)
- Ahmad Rezaei Kolahchi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Nima Khadem Mohtaram
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Mohammad Hossein Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Armin Geraili
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Parya Jafari
- Department of Electrical Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
- Center for Bioengineering Research and Education, Biomedical Engineering Program, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
8
|
Raies AB, Bajic VB. In silico toxicology: computational methods for the prediction of chemical toxicity. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2016; 6:147-172. [PMID: 27066112 PMCID: PMC4785608 DOI: 10.1002/wcms.1240] [Citation(s) in RCA: 360] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/27/2015] [Accepted: 11/10/2015] [Indexed: 01/08/2023]
Abstract
Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models. WIREs Comput Mol Sci 2016, 6:147-172. doi: 10.1002/wcms.1240 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Arwa B Raies
- King Abdullah University of Science and Technology (KAUST) Computational Bioscience Research Centre (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE) Thuwal Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST) Computational Bioscience Research Centre (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE) Thuwal Saudi Arabia
| |
Collapse
|