1
|
Wang Y, Li J, Dong F, Yue W, Ouyang YC, Wang ZB, Hou Y, Schatten H, Sun QY. CENP-T regulates both the G2/M transition and anaphase entry by acting through CDH1 in meiotic oocytes. J Cell Sci 2020; 133:jcs238105. [PMID: 31964702 DOI: 10.1242/jcs.238105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022] Open
Abstract
Oocyte meiotic maturation failure is one of the major causes for female infertility. Meiotic resumption (the G2/M transition) and progression through metaphase I (MI) are two critical stages of oocyte meiotic maturation. Here, we report that centromere protein T (CENP-T), an internal kinetochore protein, plays a critical role in meiotic resumption of mouse oocytes. Depletion of CENP-T by siRNA injection increased the CDH1 (also known as FZR1) level, resulting in increased activity of the anaphase-promoting complex (APC)-CDH1 complex, and further leading to decreased levels of the cyclin protein CCNB1, attenuated maturation-promoting factor (MPF) activity, and finally severely compromised meiotic resumption. The impaired meiotic resumption caused by CENP-T depletion could be rescued by overexpression of exogenous CCNB1 or knockdown of endogenous CDH1. Overexpression of exogenous CENP-T resulted in decreased CDH1 levels, which accelerated the progression of G2/M transition, and accelerated meiotic cell cycle progression after germinal vesicle breakdown (GVBD). Unexpectedly, spindle organization after GVBD was not affected by the overexpression, but the distribution of chromosomes was affected. Our findings reveal a novel role for CENP-T in regulating meiotic progression by acting through CDH1.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Feng Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MI 65211, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Li J, Dong F, Ouyang YC, Sun QY, Qian WP. Overexpression of cyclin A1 promotes meiotic resumption but induces premature chromosome separation in mouse oocyte. J Cell Physiol 2020; 235:7136-7145. [PMID: 32030765 DOI: 10.1002/jcp.29612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/22/2020] [Indexed: 01/29/2023]
Abstract
Mammalian cyclin A1 is prominently expressed in testis and essential for meiosis in the male mouse, however, it shows weak expression in ovary, especially during oocyte maturation. To understand why cyclin A1 behaves in this way in the oocyte, we investigated the effect of cyclin A1 overexpression on mouse oocyte meiotic maturation. Our results revealed that cyclin A1 overexpression triggered meiotic resumption even in the presence of germinal vesicle breakdown inhibitor, milrinone. Nevertheless, the cyclin A1-overexpressed oocytes failed to extrude the first polar body but were completely arrested at metaphase I. Consequently, cyclin A1 overexpression destroyed the spindle morphology and chromosome alignment by inducing premature separation of chromosomes and sister chromatids. Therefore, cyclin A1 overexpression will prevent oocyte maturation although it can promote meiotic resumption. All these results show that decreased expression of cyclin A1 in oocytes may have an evolutional significance to keep long-lasting prophase arrest and orderly chromosome separation during oocyte meiotic maturation.
Collapse
Affiliation(s)
- Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
3
|
Nevoral J, Landsmann L, Stiavnicka M, Hosek P, Moravec J, Prokesova S, Rimnacova H, Koutna E, Klein P, Hoskova K, Zalmanova T, Fenclova T, Petr J, Kralickova M. Epigenetic and non-epigenetic mode of SIRT1 action during oocyte meiosis progression. J Anim Sci Biotechnol 2019; 10:67. [PMID: 31413827 PMCID: PMC6688279 DOI: 10.1186/s40104-019-0372-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
Background SIRT1 histone deacetylase acts on many epigenetic and non-epigenetic targets. It is thought that SIRT1 is involved in oocyte maturation; therefore, the importance of the ooplasmic SIRT1 pool for the further fate of mature oocytes has been strongly suggested. We hypothesised that SIRT1 plays the role of a signalling molecule in mature oocytes through selected epigenetic and non-epigenetic regulation. Results We observed SIRT1 re-localisation in mature oocytes and its association with spindle microtubules. In mature oocytes, SIRT1 distribution shows a spindle-like pattern, and spindle-specific SIRT1 action decreases α-tubulin acetylation. Based on the observation of the histone code in immature and mature oocytes, we suggest that SIRT1 is mostly predestined for an epigenetic mode of action in the germinal vesicles (GVs) of immature oocytes. Accordingly, BML-278-driven trimethylation of lysine K9 in histone H3 in mature oocytes is considered to be a result of GV epigenetic transformation. Conclusions Taken together, our observations point out the dual spatiotemporal SIRT1 action in oocytes, which can be readily switched from the epigenetic to non-epigenetic mode of action depending on the progress of meiosis. Electronic supplementary material The online version of this article (10.1186/s40104-019-0372-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan Nevoral
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic.,2Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| | - Lukas Landsmann
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic.,3Faculty of Science, Charles University, Albertov 2038/6, 128 00 Prague, Czech Republic
| | - Miriam Stiavnicka
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic
| | - Petr Hosek
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic
| | - Jiri Moravec
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic
| | - Sarka Prokesova
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic.,4Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences in Prague, Kamycka 129, 165 00 Praha-Suchdol, Czech Republic.,5Institute of Animal Science, Pratelstvi 815/107, 104 00, Prague 10-Uhrineves, Czech Republic
| | - Hedvika Rimnacova
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic
| | - Eliska Koutna
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic.,4Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences in Prague, Kamycka 129, 165 00 Praha-Suchdol, Czech Republic
| | - Pavel Klein
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic
| | - Kristyna Hoskova
- 5Institute of Animal Science, Pratelstvi 815/107, 104 00, Prague 10-Uhrineves, Czech Republic
| | - Tereza Zalmanova
- 5Institute of Animal Science, Pratelstvi 815/107, 104 00, Prague 10-Uhrineves, Czech Republic
| | - Tereza Fenclova
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic
| | - Jaroslav Petr
- 5Institute of Animal Science, Pratelstvi 815/107, 104 00, Prague 10-Uhrineves, Czech Republic
| | - Milena Kralickova
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic.,2Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| |
Collapse
|
4
|
Li J, Tang JX, Cheng JM, Hu B, Wang YQ, Aalia B, Li XY, Jin C, Wang XX, Deng SL, Zhang Y, Chen SR, Qian WP, Sun QY, Huang XX, Liu YX. Cyclin B2 can compensate for Cyclin B1 in oocyte meiosis I. J Cell Biol 2018; 217:3901-3911. [PMID: 30097513 PMCID: PMC6219713 DOI: 10.1083/jcb.201802077] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/12/2018] [Accepted: 08/01/2018] [Indexed: 11/22/2022] Open
Abstract
Cyclin B1 and its interaction with CDK1 are thought to be critical for meiosis I progression in oocytes. However, using oocyte-specific conditional knockouts, Li et al. show that Cyclin B2 activity can compensate for Cyclin B1 to trigger meiosis resumption. Mammalian oocytes are arrested at the prophase of the first meiotic division for months and even years, depending on species. Meiotic resumption of fully grown oocytes requires activation of M-phase–promoting factor (MPF), which is composed of Cyclin B1 and cyclin-dependent kinase 1 (CDK1). It has long been believed that Cyclin B1 synthesis/accumulation and its interaction with CDK1 is a prerequisite for MPF activation in oocytes. In this study, we revealed that oocyte meiotic resumption occurred in the absence of Cyclin B1. Ccnb1-null oocytes resumed meiosis and extruded the first polar body. Without Cyclin B1, CDK1 could be activated by up-regulated Cyclin B2. Ccnb1 and Ccnb2 double knockout permanently arrested the oocytes at the prophase of the first meiotic division. Oocyte-specific Ccnb1-null female mice were infertile due to failed MPF activity elevation and thus premature interphase-like stage entry in the second meiotic division. These results have revealed a hidden compensatory mechanism between Cyclin B1 and Cyclin B2 in regulating MPF and oocyte meiotic resumption.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ji-Xin Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jin-Mei Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bian Hu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Yu-Qian Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Batool Aalia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Xu Huang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Synergistic effects of resveratrol and melatonin on in vitro maturation of porcine oocytes and subsequent embryo development. Theriogenology 2018; 114:191-198. [DOI: 10.1016/j.theriogenology.2018.03.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/20/2018] [Accepted: 03/29/2018] [Indexed: 12/31/2022]
|
6
|
Zhang Y, Guo X, Dong J. Phosphorylation of the Polarity Protein BASL Differentiates Asymmetric Cell Fate through MAPKs and SPCH. Curr Biol 2016; 26:2957-2965. [PMID: 27746029 DOI: 10.1016/j.cub.2016.08.066] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/03/2016] [Accepted: 08/30/2016] [Indexed: 12/27/2022]
Abstract
Cell polarization is commonly used for the regulation of stem cell asymmetric division in both animals and plants. Stomatal development in Arabidopsis, a process that produces breathing pores in the epidermis, requires asymmetric cell division to differentiate highly specialized guard cells while maintaining a stem cell population [1, 2]. The BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) protein exhibits a polarized localization pattern in the cell and is required for differential cell fates resulting from asymmetric cell division [3]. The polarization of BASL is made possible by a positive feedback loop with a canonical mitogen-activated protein kinase (MAPK) pathway that recruits the MAPKK kinase YODA (YDA) and MAPK 6 (MPK6) to the cortical polarity site [4]. Here, we study BASL intracellular dynamics and show that the membrane-associated BASL is slowly replenished at the cortical polarity site and that the mobility is tightly linked to its phosphorylation status. Because BASL polarity is only exhibited by one daughter cell after an asymmetric cell division, we study how BASL differentially functions in the two daughter cells. The YDA MAPK cascade transduces upstream ligand-receptor signaling [5-13] to the transcription factor SPEECHLESS (SPCH), which controls stomatal initiation and is directly suppressed by MPK3/6-mediated phosphorylation [14, 15]. We show that BASL polarization leads to elevated nuclear MPK6 signaling and lowered SPCH abundance in one of the two daughter cells. Therefore, two daughter cells are differentiated by BASL polarity-mediated differential suppression of SPCH, which may provide developmental plasticity in plant stem cell asymmetric cell division (ACD).
Collapse
Affiliation(s)
- Ying Zhang
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xiaoyu Guo
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, Piscataway, NJ 08901, USA.
| |
Collapse
|
7
|
Cayla M, Rachidi N, Leclercq O, Schmidt-Arras D, Rosenqvist H, Wiese M, Späth GF. Transgenic analysis of the Leishmania MAP kinase MPK10 reveals an auto-inhibitory mechanism crucial for stage-regulated activity and parasite viability. PLoS Pathog 2014; 10:e1004347. [PMID: 25232945 PMCID: PMC4169501 DOI: 10.1371/journal.ppat.1004347] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 07/17/2014] [Indexed: 01/15/2023] Open
Abstract
Protozoan pathogens of the genus Leishmania have evolved unique signaling mechanisms that can sense changes in the host environment and trigger adaptive stage differentiation essential for host cell infection. The signaling mechanisms underlying parasite development remain largely elusive even though Leishmania mitogen-activated protein kinases (MAPKs) have been linked previously to environmentally induced differentiation and virulence. Here, we unravel highly unusual regulatory mechanisms for Leishmania MAP kinase 10 (MPK10). Using a transgenic approach, we demonstrate that MPK10 is stage-specifically regulated, as its kinase activity increases during the promastigote to amastigote conversion. However, unlike canonical MAPKs that are activated by dual phosphorylation of the regulatory TxY motif in the activation loop, MPK10 activation is independent from the phosphorylation of the tyrosine residue, which is largely constitutive. Removal of the last 46 amino acids resulted in significantly enhanced MPK10 activity both for the recombinant and transgenic protein, revealing that MPK10 is regulated by an auto-inhibitory mechanism. Over-expression of this hyperactive mutant in transgenic parasites led to a dominant negative effect causing massive cell death during amastigote differentiation, demonstrating the essential nature of MPK10 auto-inhibition for parasite viability. Moreover, phosphoproteomics analyses identified a novel regulatory phospho-serine residue in the C-terminal auto-inhibitory domain at position 395 that could be implicated in kinase regulation. Finally, we uncovered a feedback loop that limits MPK10 activity through dephosphorylation of the tyrosine residue of the TxY motif. Together our data reveal novel aspects of protein kinase regulation in Leishmania, and propose MPK10 as a potential signal sensor of the mammalian host environment, whose intrinsic pre-activated conformation is regulated by auto-inhibition. Leishmaniasis is an important human disease caused by Leishmania parasites. A crucial aspect of Leishmania infectivity is its capacity to sense different environments and adapt for survival inside insect vector and vertebrate host by stage differentiation. This process is triggered by environmental changes encountered in these organisms, including temperature and pH shifts, which usually are sensed and transduced by signaling cascades including protein kinases and their substrates. In this study, we analyzed the regulation of the Leishmania mitogen-activated protein kinase MPK10 using protein purified from transgenic parasites and combining site-directed mutagenesis and activity tests. We demonstrate that this kinase is activated during parasite differentiation and regulated by an atypical mechanism involving auto-inhibition, which is essential for parasite viability.
Collapse
Affiliation(s)
- Mathieu Cayla
- Institut Pasteur and Centre National de la Recherche Scientifique URA 2581, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Najma Rachidi
- Institut Pasteur and Centre National de la Recherche Scientifique URA 2581, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Olivier Leclercq
- Institut Pasteur and Centre National de la Recherche Scientifique URA 2581, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Dirk Schmidt-Arras
- Institut Pasteur and Centre National de la Recherche Scientifique URA 2581, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Heidi Rosenqvist
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Martin Wiese
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Gerald F. Späth
- Institut Pasteur and Centre National de la Recherche Scientifique URA 2581, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
- * E-mail:
| |
Collapse
|
8
|
Lin ZL, Li YH, Xu YN, Wang QL, Namgoong S, Cui XS, Kim NH. Effects of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 on thein vitroMaturation of Porcine Oocytes. Reprod Domest Anim 2013; 49:219-27. [DOI: 10.1111/rda.12254] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/06/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Z-L Lin
- Department of Animal Sciences; Chungbuk National University; Cheongju Korea
| | - Y-H Li
- Department of Animal Sciences; Chungbuk National University; Cheongju Korea
| | - Y-N Xu
- Department of Animal Sciences; Chungbuk National University; Cheongju Korea
| | - Q-L Wang
- Department of Animal Sciences; Chungbuk National University; Cheongju Korea
| | - S Namgoong
- Department of Animal Sciences; Chungbuk National University; Cheongju Korea
| | - X-S Cui
- Department of Animal Sciences; Chungbuk National University; Cheongju Korea
| | - N-H Kim
- Department of Animal Sciences; Chungbuk National University; Cheongju Korea
| |
Collapse
|