1
|
New Therapeutics for Extracellular Vesicles: Delivering CRISPR for Cancer Treatment. Int J Mol Sci 2022; 23:ijms232415758. [PMID: 36555398 PMCID: PMC9779094 DOI: 10.3390/ijms232415758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers are defined by genetic defects, which underlines the prospect of using gene therapy in patient care. During the past decade, CRISPR technology has rapidly evolved into a powerful gene editing tool with high fidelity and precision. However, one of the impediments slowing down the clinical translation of CRISPR-based gene therapy concerns the lack of ideal delivery vectors. Extracellular vesicles (EVs) are nano-sized membrane sacs naturally released from nearly all types of cells. Although EVs are secreted for bio-information conveyance among cells or tissues, they have been recognized as superior vectors for drug or gene delivery. Recently, emerging evidence has spotlighted EVs in CRISPR delivery towards cancer treatment. In this review, we briefly introduce the biology and function of the CRISPR system and follow this with a summary of current delivery methods for CRISPR applications. We emphasize the recent progress in EV-mediated CRISPR editing for various cancer types and target genes. The reported strategies for constructing EV-CRISPR vectors, as well as their limitations, are discussed in detail. The review aims to throw light on the clinical potential of engineered EVs and encourage the expansion of our available toolkit to defeat cancer.
Collapse
|
2
|
Yang X, You C, Wang X, Gao L, Mo B, Liu L, Chen X. Widespread occurrence of microRNA-mediated target cleavage on membrane-bound polysomes. Genome Biol 2021; 22:15. [PMID: 33402203 PMCID: PMC7784310 DOI: 10.1186/s13059-020-02242-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Small RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) serve as core players in gene silencing at transcriptional and post-transcriptional levels in plants, but their subcellular localization has not yet been well studied, thus limiting our mechanistic understanding of sRNA action. Results We investigate the cytoplasmic partitioning of sRNAs and their targets globally in maize (Zea mays, inbred line “B73”) and rice (Oryza sativa, cv. “Nipponbare”) by high-throughput sequencing of polysome-associated sRNAs and 3′ cleavage fragments, and find that both miRNAs and a subset of 21-nucleotide (nt)/22-nt siRNAs are enriched on membrane-bound polysomes (MBPs) relative to total polysomes (TPs) across different tissues. Most of the siRNAs are generated from transposable elements (TEs), and retrotransposons positively contributed to MBP overaccumulation of 22-nt TE-derived siRNAs (TE-siRNAs) as opposed to DNA transposons. Widespread occurrence of miRNA-mediated target cleavage is observed on MBPs, and a large proportion of these cleavage events are MBP-unique. Reproductive 21PHAS (21-nt phasiRNA-generating) and 24PHAS (24-nt phasiRNA-generating) precursors, which were commonly considered as noncoding RNAs, are bound by polysomes, and high-frequency cleavage of 21PHAS precursors by miR2118 and 24PHAS precursors by miR2275 is further detected on MBPs. Reproductive 21-nt phasiRNAs are enriched on MBPs as opposed to TPs, whereas 24-nt phasiRNAs are nearly completely devoid of polysome occupancy. Conclusions MBP overaccumulation is a conserved pattern for cytoplasmic partitioning of sRNAs, and endoplasmic reticulum (ER)-bound ribosomes function as an independent regulatory layer for miRNA-induced gene silencing and reproductive phasiRNA biosynthesis in maize and rice.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Chenjiang You
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Xufeng Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
3
|
Li YF, Zhao M, Wang M, Guo J, Wang L, Ji J, Qiu Z, Zheng Y, Sunkar R. An improved method of constructing degradome library suitable for sequencing using Illumina platform. PLANT METHODS 2019; 15:134. [PMID: 31832076 PMCID: PMC6859640 DOI: 10.1186/s13007-019-0524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/09/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Post-transcriptional gene regulation is one of the critical layers of overall gene expression programs and microRNAs (miRNAs) play an indispensable role in this process by guiding cleavage on the messenger RNA targets. The transcriptome-wide cleavages on the target transcripts can be identified by analyzing the degradome or PARE or GMUCT libraries. However, high-throughput sequencing of PARE or degradome libraries using Illumina platform, a widely used platform, is not so straightforward. Moreover, the currently used degradome or PARE methods utilize MmeI restriction site in the 5' RNA adapter and the resulting fragments are only 20-nt long, which often poses difficulty in distinguishing between the members of the same target gene family or distinguishing miRNA biogenesis intermediates from the primary miRNA transcripts belonging to the same miRNA family. Consequently, developing a method which can generate longer fragments from the PARE or degradome libraries which can also be sequenced easily using Illumina platform is ideal. RESULTS In this protocol, 3' end of the 5'RNA adaptor of TruSeq small RNA library is modified by introducing EcoP15I recognition site. Correspondingly, the double-strand DNA (dsDNA) adaptor sequence is also modified to suit with the ends generated by the restriction enzyme EcoP15I. These modifications allow amplification of the degradome library by primer pairs used for small RNA library preparation, thus amenable for sequencing using Illumina platform, like small RNA library. CONCLUSIONS Degradome library generated using this improved protocol can be sequenced easily using Illumina platform, and the resulting tag length is ~ 27-nt, which is longer than the MmeI generated fragment (20-nt) that can facilitate better accuracy in validating target transcripts belonging to the same gene family or distinguishing miRNA biogenesis intermediates of the same miRNA family. Furthermore, this improved method allows pooling and sequencing degradome libraries and small RNA libraries simultaneously using Illumina platform.
Collapse
Affiliation(s)
- Yong-Fang Li
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Miao Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Menglei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Junqiang Guo
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
| | - Li Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Jie Ji
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Zongbo Qiu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan People’s Republic of China
| | - Yun Zheng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 USA
| |
Collapse
|
4
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
5
|
Guo Z, Liu X, Li M, Shao C, Tao J, Sun W, Li M. Differential urinary glycoproteome analysis of type 2 diabetic nephropathy using 2D-LC-MS/MS and iTRAQ quantification. J Transl Med 2015; 13:371. [PMID: 26608305 PMCID: PMC4660682 DOI: 10.1186/s12967-015-0712-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/23/2015] [Indexed: 01/20/2023] Open
Abstract
Background Diabetic nephropathy (DN) is the leading cause of chronic kidney failure and end-stage kidney disease. More accurate and non-invasive test for the diagnosis and monitoring the progression of DN is urgently needed for the better care of such patients. Methods In this study we utilized urinary glycoproteome to discover the differential proteins during the course of type 2 DN. The urinary glycoproteins from normal controls, normalbuminuira, microalbuminura, and macroalbuminuria patients were enriched by concanavalin A (ConA) and analyzed by 2DLC/MS/MS and isobaric tags for relative and absolute quantitation quantification. Results A total of 478 proteins were identified and 408 were annotated as N-linked glycoproteins. A total of 72, 107 and 123 differential proteins were identified in normalbuminuria, microalbuminuria and macroalbuminuria, respectively. By bioinformatics analysis, in normalbuminruia state, cell proliferation and cell movement were activated, which might reflect the compensatory phase during the disease development. In micro- and macro-albuminuria, cell death and apoptosis was activated, which might reflect the de-compensatory phase. Pathway analysis showed acute phase proteins, the member of high density lipoprotein and low density lipoprotein proteins were changed, indicating the role of the inflammatory response and lipid metabolism abnormality in the pathogenesis of DN. Six selected differential proteins were validated by Western Blot. Alpha-1-antitrypsin (SERPINA1) and Ceruloplasmin are the two markers with excellent area under curve values (0.929 and 1.000 respectively) to distinguish the microalbuminuria and normalbuminuria. For the first time, we found pro-epidermal growth factor and prolactin-inducible protein were decreased in macroalbuminuria stage, which might reflect the inhibition of cell viability and the activation of cell death in kidney. Conclusions Above data indicated that urinary glycoproteome could be useful to distinguish the differences in protein profiles in different stages in DN, which will help better individualized care of patients in DN. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0712-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhengguang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China.
| | - Xuejiao Liu
- Department of Nephrology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyan, Wangfujing Street, Beijing, China.
| | - Menglin Li
- National Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China.
| | - Chen Shao
- The Center for Biomedical Information, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China.
| | - Jianling Tao
- Department of Nephrology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyan, Wangfujing Street, Beijing, China.
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China.
| | - Mingxi Li
- Department of Nephrology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyan, Wangfujing Street, Beijing, China.
| |
Collapse
|
6
|
Li YF, Zheng Y, Jagadeeswaran G, Sunkar R. Characterization of small RNAs and their target genes in wheat seedlings using sequencing-based approaches. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 203-204:17-24. [PMID: 23415324 DOI: 10.1016/j.plantsci.2012.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/20/2012] [Accepted: 12/23/2012] [Indexed: 05/24/2023]
Abstract
Wheat is the most highly cultivated plant species for its grain production throughout the world. Because small RNA-dependent gene regulation is critical for successful completion of plant life cycle including its productivity, identification of not only miRNAs but also confirming their targets in wheat is important. To identify small RNAs including novel miRNAs as well as miRNA targets in wheat, we constructed small RNA and degradome libraries from wheat seedlings. Small RNA analysis resulted in identification of most conserved miRNAs including novel miRNAs that can be grouped into 32 miRNA families. The sequence analysis also led to the characterization of two abundantly expressed rRNA-derived small RNAs. To identify miRNA targets, degradome library was sequenced and the bioinformatic analysis confirmed 53 genes as targets for miRNAs and Tas3-siRNAs. Degradome analysis also confirmed a conserved fine-tuning mechanism of Tas3-siRNA abundance by siRNA-mediated silencing of TAS3 transcripts in diverse plant species. These findings added additional information to the small RNA knowledge-base in wheat.
Collapse
Affiliation(s)
- Yong-Fang Li
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | |
Collapse
|