Kakall ZM, Nedoboy PE, Farnham MMJ, Pilowsky PM. Activation of µ-opioid receptors in the rostral ventrolateral medulla blocks the sympathetic counterregulatory response to glucoprivation.
Am J Physiol Regul Integr Comp Physiol 2018;
315:R1115-R1122. [PMID:
30281326 DOI:
10.1152/ajpregu.00248.2018]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Activation of neurons in the rostral ventrolateral medulla (RVLM) following glucoprivation initiates sympathoadrenal activation, adrenaline release, and increased glucose production. Here, we aimed to determine the role of RVLM µ-opioid receptors in the counterregulatory response to systemic glucoprivation. Experiments were performed in pentobarbital sodium anesthetized male Sprague-Dawley rats ( n = 30). Bilateral activation of RVLM µ-opioid receptors with [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) (8 mM, 50 nl) depressed adrenal sympathetic nerve activity for ~60 min ( n = 6; Δ49.9 ± 5.8%, P < 0.05). The counterregulatory response to glucoprivation (measured by adrenal sympathetic efferent nerve activity) induced by 2-deoxyglucose (2-DG) ( n = 6; Δ63.6 ± 16.5%, P < 0.05) was completely blocked 60 min after DAMGO microinjections ( n = 6; Δ10.2 ± 3.5%, P < 0.05). Furthermore, DAMGO pretreatment attenuated the increase in blood glucose levels after 2-DG infusion ( n = 6; 6.1 ± 0.7mmol/l vs. baseline 5.2 ± 0.3mmol/l, P > 0.05) compared with 2-DG alone ( n = 6; 7.6 ± 0.4mmol/l vs. baseline 6.0 ± 0.4mmol/l, P < 0.05). Thus, activation of RVLM µ-opioid receptors attenuated the neural efferent response to glucoprivation and reduced glucose production.
Collapse