1
|
Paczkowska J, Soloch N, Bodnar M, Kiwerska K, Janiszewska J, Vogt J, Domanowska E, Martin-Subero JI, Ammerpohl O, Klapper W, Marszalek A, Siebert R, Giefing M. Expression of ELF1, a lymphoid ETS domain-containing transcription factor, is recurrently lost in classical Hodgkin lymphoma. Br J Haematol 2019; 185:79-88. [PMID: 30681722 DOI: 10.1111/bjh.15757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023]
Abstract
Loss of B cell-specific transcription factors (TFs) and the resulting loss of B-cell phenotype of Hodgkin and Reed-Sternberg (HRS) cells is a hallmark of classical Hodgkin lymphoma (cHL). Here we have analysed two members of ETS domain containing TFs, ELF1 and ELF2, regarding (epi)genomic changes as well as gene and protein expression. We observed absence or lower levels of ELF1 protein in HRS cells of 31/35 (89%) cases compared to the bystander cells and significant (P < 0·01) downregulation of the gene on mRNA as well as protein level in cHL compared to non-cHL cell lines. However, no recurrent loss of ELF2 protein was observed. Moreover, ELF1 was targeted by heterozygous deletions combined with hypermethylation of the remaining allele(s) in 4/7 (57%) cell lines. Indeed, DNA hypermethylation (range 95-99%, mean 98%) detected in the vicinity of the ELF1 transcription start site was found in all 7/7 (100%) cHL cell lines. Similarly, 5/18 (28%) analysed primary biopsies carried heterozygous deletions of the gene. We demonstrate that expression of ELF1 is impaired in cHL through genetic and epigenetic alterations, and thus, it may represent an additional member of a TF network whose downregulation contributes to the loss of B-cell phenotype of HRS cells.
Collapse
Affiliation(s)
- Julia Paczkowska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Natalia Soloch
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.,Department of Otolaryngology and Laryngological Oncology, Poznan University of Medical Science, Poznan, Poland
| | - Katarzyna Kiwerska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Department of Tumour Pathology, Greater Poland Cancer Centre, Poznan, Poland
| | | | - Julia Vogt
- Institute of Human Genetics, Ulm University & Ulm University Medical Centre, Ulm, Germany
| | - Ewa Domanowska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - José I Martin-Subero
- Insitut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ole Ammerpohl
- Institute of Human Genetics, Ulm University & Ulm University Medical Centre, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Andrzej Marszalek
- Department of Tumour Pathology and Prophylaxis, Poznan University of Medical Sciences & Greater Poland Cancer Centre, Poznan, Poland
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Centre, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Institute of Human Genetics, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
3
|
Wurster KD, Hummel F, Richter J, Giefing M, Hartmann S, Hansmann ML, Kreher S, Köchert K, Krappmann D, Klapper W, Hummel M, Wenzel SS, Lenz G, Janz M, Dörken B, Siebert R, Mathas S. Inactivation of the putative ubiquitin-E3 ligase PDLIM2 in classical Hodgkin and anaplastic large cell lymphoma. Leukemia 2016; 31:602-613. [PMID: 27538486 PMCID: PMC5339435 DOI: 10.1038/leu.2016.238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
Abstract
Apart from its unique histopathological appearance with rare tumor cells embedded in an inflammatory background of bystander cells, classical Hodgkin lymphoma (cHL) is characterized by an unusual activation of a broad range of signaling pathways involved in cellular activation. This includes constitutive high-level activity of nuclear factor-κB (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), activator protein-1 (AP-1) and interferon regulatory factor (IRF) transcription factors (TFs) that are physiologically only transiently activated. Here, we demonstrate that inactivation of the putative ubiquitin E3-ligase PDLIM2 contributes to this TF activation. PDLIM2 expression is lost at the mRNA and protein levels in the majority of cHL cell lines and Hodgkin and Reed–Sternberg (HRS) cells of nearly all cHL primary samples. This loss is associated with PDLIM2 genomic alterations, promoter methylation and altered splicing. Reconstitution of PDLIM2 in HRS cell lines inhibits proliferation, blocks NF-κB transcriptional activity and contributes to cHL-specific gene expression. In non-Hodgkin B-cell lines, small interfering RNA-mediated PDLIM2 knockdown results in superactivation of TFs NF-κB and AP-1 following phorbol 12-myristate 13-acetate (PMA) stimulation. Furthermore, expression of PDLIM2 is lost in anaplastic large cell lymphoma (ALCL) that shares key biological aspects with cHL. We conclude that inactivation of PDLIM2 is a recurrent finding in cHL and ALCL, promotes activation of inflammatory signaling pathways and thereby contributes to their pathogenesis.
Collapse
Affiliation(s)
- K D Wurster
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - F Hummel
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - J Richter
- Institute of Human Genetics, Christian-Albrechts University Kiel, Kiel, Germany
| | - M Giefing
- Institute of Human Genetics, Christian-Albrechts University Kiel, Kiel, Germany.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - S Hartmann
- Dr Senckenberg Institute of Pathology, University of Frankfurt, Medical School, Frankfurt, Germany
| | - M-L Hansmann
- Dr Senckenberg Institute of Pathology, University of Frankfurt, Medical School, Frankfurt, Germany
| | - S Kreher
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - K Köchert
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - D Krappmann
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München für Gesundheit und Umwelt, Neuherberg, Germany
| | - W Klapper
- Department of Pathology, Haematopathology Section and Lymph Node Registry, Christian-Albrechts University Kiel, Kiel, Germany
| | - M Hummel
- Institute of Pathology, Charité-Universitätsmedzin Berlin, Berlin, Germany
| | - S-S Wenzel
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - G Lenz
- Division of Translational Oncology, Department of Medicine A, University Hospital Münster, and Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - M Janz
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - B Dörken
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - R Siebert
- Institute of Human Genetics, Christian-Albrechts University Kiel, Kiel, Germany.,Institute of Human Genetics, University Hospital Ulm, Ulm, Germany
| | - S Mathas
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Schneider M, Schneider S, Zühlke-Jenisch R, Klapper W, Sundström C, Hartmann S, Hansmann ML, Siebert R, Küppers R, Giefing M. Alterations of theCD58gene in classical Hodgkin lymphoma. Genes Chromosomes Cancer 2015; 54:638-45. [DOI: 10.1002/gcc.22276] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 01/15/2023] Open
Affiliation(s)
- Markus Schneider
- Faculty of Medicine, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen; Essen Germany
| | - Stefanie Schneider
- Faculty of Medicine, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen; Essen Germany
| | - Reina Zühlke-Jenisch
- Institute of Human Genetics, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Campus Kiel; Kiel Germany
| | - Wolfram Klapper
- Department of Pathology; Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel/Christian-Albrechts-University Kiel; Kiel Germany
| | - Christer Sundström
- Department of Immunology; Genetics and Pathology, Uppsala University Hospital; Uppsala Sweden
| | - Sylvia Hartmann
- Senckenberg Institute of Pathology, University of Frankfurt, Medical School; Frankfurt Germany
| | - Martin-Leo Hansmann
- Senckenberg Institute of Pathology, University of Frankfurt, Medical School; Frankfurt Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Campus Kiel; Kiel Germany
| | - Ralf Küppers
- Faculty of Medicine, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen; Essen Germany
| | - Maciej Giefing
- Institute of Human Genetics, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Campus Kiel; Kiel Germany
- Institute of Human Genetics, Polish Academy of Sciences; Poznan Poland
- Department of Otolaryngology; Head and Neck Surgery; Poznan University of Medical Sciences; Poznan Poland
| |
Collapse
|
5
|
Giefing M, Winoto-Morbach S, Sosna J, Döring C, Klapper W, Küppers R, Böttcher S, Adam D, Siebert R, Schütze S. Hodgkin-Reed-Sternberg cells in classical Hodgkin lymphoma show alterations of genes encoding the NADPH oxidase complex and impaired reactive oxygen species synthesis capacity. PLoS One 2013; 8:e84928. [PMID: 24376854 PMCID: PMC3871653 DOI: 10.1371/journal.pone.0084928] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/20/2013] [Indexed: 12/16/2022] Open
Abstract
The membrane bound NADPH oxidase involved in the synthesis of reactive oxygen species (ROS) is a multi-protein enzyme encoded by CYBA, CYBB, NCF1, NCF2 and NCF4 genes. Growing evidence suggests a role of ROS in the modulation of signaling pathways of non-phagocytic cells, including differentiation and proliferation of B-cell progenitors. Transcriptional downregulation of the CYBB gene has been previously reported in cell lines of the B-cell derived classical Hodgkin lymphoma (cHL). Thus, we explored functional consequences of CYBB downregulation on the NADPH complex. Using flow cytometry to detect and quantify superoxide anion synthesis in cHL cell lines we identified recurrent loss of superoxide anion production in all stimulated cHL cell lines in contrast to stimulated non-Hodgkin lymphoma cell lines. As CYBB loss proved to exert a deleterious effect on the NADPH oxidase complex in cHL cell lines, we analyzed the CYBB locus in Hodgkin and Reed-Sternberg (HRS) cells of primary cHL biopsies by in situ hybridisation and identified recurrent deletions of the gene in 8/18 cases. Immunohistochemical analysis to 14 of these cases revealed a complete lack of detectable CYBB protein expression in all HRS cells in all cases studied. Moreover, by microarray profiling of cHL cell lines we identified additional alterations of NADPH oxidase genes including CYBA copy number loss in 3/7 cell lines and a significant downregulation of the NCF1 transcription (p=0.006) compared to normal B-cell subsets. Besides, NCF1 protein was significantly downregulated (p<0.005) in cHL compared to other lymphoma cell lines. Together this findings show recurrent alterations of the NADPH oxidase encoding genes that result in functional inactivation of the enzyme and reduced production of superoxide anion in cHL.
Collapse
Affiliation(s)
- Maciej Giefing
- Institute of Human Genetics, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- * E-mail:
| | - Supandi Winoto-Morbach
- Institute of Immunology, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Justyna Sosna
- Institute of Immunology, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Claudia Döring
- Senckenberg Institute of Pathology, University of Frankfurt, Medical School, Frankfurt, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Kiel, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Faculty of Medicine, Essen, Germany
| | - Sebastian Böttcher
- Second Department of Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dieter Adam
- Institute of Immunology, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|