1
|
Welin A, Hüsler D, Hilbi H. Imaging Flow Cytometry of Legionella-Containing Vacuoles in Intact and Homogenized Wild-Type and Mutant Dictyostelium. Methods Mol Biol 2023; 2635:63-85. [PMID: 37074657 DOI: 10.1007/978-1-0716-3020-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The causative agent of a severe pneumonia termed "Legionnaires' disease", Legionella pneumophila, replicates within protozoan and mammalian phagocytes in a specialized intracellular compartment called the Legionella-containing vacuole (LCV). This compartment does not fuse with bactericidal lysosomes but communicates extensively with several cellular vesicle trafficking pathways and eventually associates tightly with the endoplasmic reticulum. In order to comprehend in detail the complex process of LCV formation, the identification and kinetic analysis of cellular trafficking pathway markers on the pathogen vacuole are crucial. This chapter describes imaging flow cytometry (IFC)-based methods for the objective, quantitative and high-throughput analysis of different fluorescently tagged proteins or probes on the LCV. To this end, we use the haploid amoeba Dictyostelium discoideum as an infection model for L. pneumophila, to analyze either fixed intact infected host cells or LCVs from homogenized amoebae. Parental strains and isogenic mutant amoebae are compared in order to determine the contribution of a specific host factor to LCV formation. The amoebae simultaneously produce two different fluorescently tagged probes enabling tandem quantification of two LCV markers in intact amoebae or the identification of LCVs using one probe and quantification of the other probe in host cell homogenates. The IFC approach allows rapid generation of statistically robust data from thousands of pathogen vacuoles and can be applied to other infection models.
Collapse
Affiliation(s)
- Amanda Welin
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Dario Hüsler
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
2
|
Swart AL, Harrison CF, Eichinger L, Steinert M, Hilbi H. Acanthamoeba and Dictyostelium as Cellular Models for Legionella Infection. Front Cell Infect Microbiol 2018; 8:61. [PMID: 29552544 PMCID: PMC5840211 DOI: 10.3389/fcimb.2018.00061] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Environmental bacteria of the genus Legionella naturally parasitize free-living amoebae. Upon inhalation of bacteria-laden aerosols, the opportunistic pathogens grow intracellularly in alveolar macrophages and can cause a life-threatening pneumonia termed Legionnaires' disease. Intracellular replication in amoebae and macrophages takes place in a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system, which translocates literally hundreds of "effector" proteins into host cells, where they modulate crucial cellular processes for the pathogen's benefit. The mechanism of LCV formation appears to be evolutionarily conserved, and therefore, amoebae are not only ecologically significant niches for Legionella spp., but also useful cellular models for eukaryotic phagocytes. In particular, Acanthamoeba castellanii and Dictyostelium discoideum emerged over the last years as versatile and powerful models. Using genetic, biochemical and cell biological approaches, molecular interactions between amoebae and Legionella pneumophila have recently been investigated in detail with a focus on the role of phosphoinositide lipids, small and large GTPases, autophagy components and the retromer complex, as well as on bacterial effectors targeting these host factors.
Collapse
Affiliation(s)
- A Leoni Swart
- Institute of Medical Microbiology, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Christopher F Harrison
- Max von Pettenkofer Institute, Medical Faculty, Ludwig-Maximilians University Munich, Munich, Germany
| | - Ludwig Eichinger
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Michael Steinert
- Department of Life Sciences, Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Hubert Hilbi
- Institute of Medical Microbiology, Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Khanna A, Lotfi P, Chavan AJ, Montaño NM, Bolourani P, Weeks G, Shen Z, Briggs SP, Pots H, Van Haastert PJM, Kortholt A, Charest PG. The small GTPases Ras and Rap1 bind to and control TORC2 activity. Sci Rep 2016; 6:25823. [PMID: 27172998 PMCID: PMC4865869 DOI: 10.1038/srep25823] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/22/2016] [Indexed: 02/05/2023] Open
Abstract
Target of Rapamycin Complex 2 (TORC2) has conserved roles in regulating cytoskeleton dynamics and cell migration and has been linked to cancer metastasis. However, little is known about the mechanisms regulating TORC2 activity and function in any system. In Dictyostelium, TORC2 functions at the front of migrating cells downstream of the Ras protein RasC, controlling F-actin dynamics and cAMP production. Here, we report the identification of the small GTPase Rap1 as a conserved binding partner of the TORC2 component RIP3/SIN1, and that Rap1 positively regulates the RasC-mediated activation of TORC2 in Dictyostelium. Moreover, we show that active RasC binds to the catalytic domain of TOR, suggesting a mechanism of TORC2 activation that is similar to Rheb activation of TOR complex 1. Dual Ras/Rap1 regulation of TORC2 may allow for integration of Ras and Rap1 signaling pathways in directed cell migration.
Collapse
Affiliation(s)
- Ankita Khanna
- Department of Cell Biochemistry, University of Groningen, Groningen, 9747AG, Netherlands
| | - Pouya Lotfi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Anita J. Chavan
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Nieves M. Montaño
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Parvin Bolourani
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Gerald Weeks
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhouxin Shen
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0380, USA
| | - Steven P. Briggs
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0380, USA
| | - Henderikus Pots
- Department of Cell Biochemistry, University of Groningen, Groningen, 9747AG, Netherlands
| | | | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, 9747AG, Netherlands
| | - Pascale G. Charest
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721-0088, USA
| |
Collapse
|
4
|
Plak K, Keizer-Gunnink I, van Haastert PJM, Kortholt A. Rap1-dependent pathways coordinate cytokinesis in Dictyostelium. Mol Biol Cell 2014; 25:4195-204. [PMID: 25298405 PMCID: PMC4263460 DOI: 10.1091/mbc.e14-08-1285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dictyostelium Rap1 is dynamically activated during cytokinesis and drives cytokinesis progression by coordinating the three major cytoskeletal components: microtubules, actin, and myosin II. Importantly, mutated forms of Rap also affect cytokinesis in other organisms, suggesting a conserved role for Rap in cell division. Cytokinesis is the final step of mitosis when a mother cell is separated into two daughter cells. Major cytoskeletal changes are essential for cytokinesis; it is, however, not well understood how the microtubules and actomyosin cytoskeleton are exactly regulated in time and space. In this paper, we show that during the early stages of cytokinesis, in rounded-up Dictyostelium discoideum cells, the small G-protein Rap1 is activated uniformly at the cell cortex. When cells begin to elongate, active Rap1 becomes restricted from the furrow region, where the myosin contractile ring is subsequently formed. In the final stages of cytokinesis, active Rap1 is only present at the cell poles. Mutant cells with decreased Rap1 activation at the poles showed strongly decreased growth rates. Hyperactivation of Rap1 results in severe growth delays and defective spindle formation in adherent cells and cell death in suspension. Furthermore, Rap mutants show aberrant regulation of the actomyosin cytoskeleton, resulting in extended furrow ingression times and asymmetrical cell division. We propose that Rap1 drives cytokinesis progression by coordinating the three major cytoskeletal components: microtubules, actin, and myosin II. Importantly, mutated forms of Rap also affect cytokinesis in other organisms, suggesting a conserved role for Rap in cell division.
Collapse
Affiliation(s)
- Katarzyna Plak
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, Netherlands
| | - Ineke Keizer-Gunnink
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, Netherlands
| | - Peter J M van Haastert
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, 9747 AG Groningen, Netherlands
| |
Collapse
|