1
|
Ujlaky-Nagy L, Szöllősi J, Vereb G. Disrupting EGFR-HER2 Transactivation by Pertuzumab in HER2-Positive Cancer: Quantitative Analysis Reveals EGFR Signal Input as Potential Predictor of Therapeutic Outcome. Int J Mol Sci 2024; 25:5978. [PMID: 38892166 PMCID: PMC11173106 DOI: 10.3390/ijms25115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Pertuzumab (Perjeta®), a humanized antibody binding to the dimerization arm of HER2 (Human epidermal growth factor receptor-2), has failed as a monotherapy agent in HER2 overexpressing malignancies. Since the molecular interaction of HER2 with ligand-bound EGFR (epidermal growth factor receptor) has been implied in mitogenic signaling and malignant proliferation, we hypothesized that this interaction, rather than HER2 expression and oligomerization alone, could be a potential molecular target and predictor of the efficacy of pertuzumab treatment. Therefore, we investigated static and dynamic interactions between HER2 and EGFR molecules upon EGF stimulus in the presence and absence of pertuzumab in HER2+ EGFR+ SK-BR-3 breast tumor cells using Förster resonance energy transfer (FRET) microscopy and fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS). The consequential activation of signaling and changes in cell proliferation were measured by Western blotting and MTT assay. The autocorrelation functions of HER2 diffusion were best fitted by a three-component model corrected for triplet formation, and among these components the slowly diffusing membrane component revealed aggregation induced by EGFR ligand binding, as evidenced by photon-counting histograms and co-diffusing fractions. This aggregation has efficiently been prevented by pertuzumab treatment, which also inhibited the post-stimulus interaction of EGFR and HER2, as monitored by changes in FRET efficiency. Overall, the data demonstrated that pertuzumab, by hindering post-stimulus interaction between EGFR and HER2, inhibits EGFR-evoked HER2 aggregation and phosphorylation and leads to a dose-dependent decrease in cell proliferation, particularly when higher amounts of EGF are present. Consequently, we propose that EGFR expression on HER2-positive tumors could be taken into consideration as a potential biomarker when predicting the outcome of pertuzumab treatment.
Collapse
Affiliation(s)
- László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
2
|
Fritze JS, Stiehler FF, Wolfrum U. Pathogenic Variants in USH1G/SANS Alter Protein Interaction with Pre-RNA Processing Factors PRPF6 and PRPF31 of the Spliceosome. Int J Mol Sci 2023; 24:17608. [PMID: 38139438 PMCID: PMC10744108 DOI: 10.3390/ijms242417608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Pre-mRNA splicing is an essential process orchestrated by the spliceosome, a dynamic complex assembled stepwise on pre-mRNA. We have previously identified that USH1G protein SANS regulates pre-mRNA splicing by mediating the intranuclear transfer of the spliceosomal U4/U6.U5 tri-snRNP complex. During this process, SANS interacts with the U4/U6 and U5 snRNP-specific proteins PRPF31 and PRPF6 and regulates splicing, which is disturbed by variants of USH1G/SANS causative for human Usher syndrome (USH), the most common form of hereditary deaf-blindness. Here, we aim to gain further insights into the molecular interaction of the splicing molecules PRPF31 and PRPF6 to the CENTn domain of SANS using fluorescence resonance energy transfer assays in cells and in silico deep learning-based protein structure predictions. This demonstrates that SANS directly binds via two distinct conserved regions of its CENTn to the two PRPFs. In addition, we provide evidence that these interactions occur sequentially and a conformational change of an intrinsically disordered region to a short α-helix of SANS CENTn2 is triggered by the binding of PRPF6. Furthermore, we find that pathogenic variants of USH1G/SANS perturb the binding of SANS to both PRPFs, implying a significance for the USH1G pathophysiology.
Collapse
Affiliation(s)
| | | | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (J.S.F.)
| |
Collapse
|
3
|
Lewandowski TM, An P, Ramil CP, Fang M, Lin Q. Dual fluorescent labeling of GLP-1R in live cells via enzymatic tagging and bioorthogonal chemistry. RSC Chem Biol 2022; 3:702-706. [PMID: 35755189 PMCID: PMC9175107 DOI: 10.1039/d2cb00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
To study GPCR conformational dynamics in live cells, here we report an integrated approach combining enzymatic SNAP-tagging with bioorthogonal chemistry for dual fluorescent labeling of GLP-1R. The resulting GLP-1R conformational biosensors permit a FRET-based analysis of the receptor subdomain movement in response to ligand stimulation in live cells.
Collapse
Affiliation(s)
- Tracey M Lewandowski
- Department of Chemistry, State University of New York at Buffalo Buffalo New York 14260-3000 USA
| | - Peng An
- Department of Chemistry, State University of New York at Buffalo Buffalo New York 14260-3000 USA
| | - Carlo P Ramil
- Department of Chemistry, State University of New York at Buffalo Buffalo New York 14260-3000 USA
| | - Ming Fang
- Department of Chemistry, State University of New York at Buffalo Buffalo New York 14260-3000 USA
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo Buffalo New York 14260-3000 USA
| |
Collapse
|
4
|
Chen F, Yan H, Guo C, Zhu H, Yi J, Sun X, Yang J. Assessment of SENP3-interacting proteins in hepatocytes treated with diethylnitrosamine by BioID assay. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1237-1246. [PMID: 34312671 PMCID: PMC8406365 DOI: 10.1093/abbs/gmab096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/03/2022] Open
Abstract
SUMOylation of proteins regulates cell behaviors and is reversibly removed by small ubiquitin-like modifier (SUMO)-specific proteases (SENPs). The SENP family member SENP3 is involved in SUMO2/3 deconjugation and has been reported to sense cell stress and accumulate in several human cancer cells and macrophages. We previously reported that Senp3-knockout heterozygous mice showed smaller liver, but the pertinent mechanisms of SENP3 and SUMOylated substrates remain unclear. Thus, in this study, we investigated the interacting proteins with SENP3 and the alteration in hepatocytes treated with the xenobiotic diethylnitrosamine (DEN), which is specifically transformed in the liver and induces DNA double-strand breaks. Our data revealed that a certain amount of SENP3 was present in normal, untreated hepatocytes; however, DEN treatment promoted rapid SENP3 accumulation. SENP3 was mainly localized in the nuclei, and its level was significantly increased in the cytoplasm after 2 h of DEN treatment. The application of the recent proximity-dependent biotinylation (BioID) method led to the identification of 310 SENP3-interacting proteins that were involved in not only gene transcription but also RNA splicing, protein folding, and metabolism. Furthermore, after DEN exposure for a short duration, ribosomal proteins as well as proteins associated with mitochondrial ATP synthesis, membrane transport, and bile acid synthesis, rather than DNA repair proteins, were identified. This study provides insights into the diverse regulatory roles of SENP3, and the BioID method seems to be efficient for identifying physiologically relevant insoluble proteins.
Collapse
Affiliation(s)
- Fei Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongyu Yan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chu Guo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huiqin Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Yi
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuxu Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
5
|
Senarisoy M, Barette C, Lacroix F, De Bonis S, Stelter M, Hans F, Kleman JP, Fauvarque MO, Timmins J. Förster Resonance Energy Transfer Based Biosensor for Targeting the hNTH1-YB1 Interface as a Potential Anticancer Drug Target. ACS Chem Biol 2020; 15:990-1003. [PMID: 32125823 DOI: 10.1021/acschembio.9b01023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Y-box binding protein 1 (YB1) is an established metastatic marker: high expression and nuclear localization of YB1 correlate with tumor aggressiveness, drug resistance, and poor patient survival in various tumors. In the nucleus, YB1 interacts with and regulates the activities of several nuclear proteins, including the DNA glycosylase, human endonuclease III (hNTH1). In the present study, we used Förster resonance energy transfer (FRET) and AlphaLISA technologies to further characterize this interaction and define the minimal regions of hNTH1 and YB1 required for complex formation. This work led us to design an original and cost-effective FRET-based biosensor for the rapid in vitro high-throughput screening for potential inhibitors of the hNTH1-YB1 complex. Two pilot screens were carried out, allowing the selection of several promising compounds exhibiting IC50 values in the low micromolar range. Interestingly, two of these compounds bind to YB1 and sensitize drug-resistant breast tumor cells to the chemotherapeutic agent, cisplatin. Taken together, these findings demonstrate that the hNTH1-YB1 interface is a druggable target for the development of new therapeutic strategies for the treatment of drug-resistant tumors. Moreover, beyond this study, the simple design of our biosensor defines an innovative and efficient strategy for the screening of inhibitors of therapeutically relevant protein-protein interfaces.
Collapse
Affiliation(s)
- Muge Senarisoy
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Caroline Barette
- Univ. Grenoble Alpes, CEA, INSERM, BGE, F-38000 Grenoble, France
| | | | | | - Meike Stelter
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Fabienne Hans
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| |
Collapse
|
6
|
Pomerantz AK, Sari-Sarraf F, Grove KJ, Pedro L, Rudewicz PJ, Fathman JW, Krucker T. Enabling drug discovery and development through single-cell imaging. Expert Opin Drug Discov 2018; 14:115-125. [DOI: 10.1080/17460441.2019.1559147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Andrea K. Pomerantz
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research Inc., Cambridge, MA, USA
| | - Farid Sari-Sarraf
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research Inc., Cambridge, MA, USA
| | - Kerri J. Grove
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research Inc., Emeryville, CA, USA
| | - Liliana Pedro
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research Inc., Emeryville, CA, USA
| | - Patrick J. Rudewicz
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research Inc., Emeryville, CA, USA
| | - John W. Fathman
- Cancer Therapeutics, Genomics Institute of the Novartis Research Foundation, La Jolla, CA, USA
| | - Thomas Krucker
- Alliance Management and Partnering, Novartis Institutes for BioMedical Research Inc., Emeryville, CA, USA
| |
Collapse
|
7
|
Tóth G, Szöőr Á, Simon L, Yarden Y, Szöllősi J, Vereb G. The combination of trastuzumab and pertuzumab administered at approved doses may delay development of trastuzumab resistance by additively enhancing antibody-dependent cell-mediated cytotoxicity. MAbs 2016; 8:1361-1370. [PMID: 27380003 PMCID: PMC5058622 DOI: 10.1080/19420862.2016.1204503] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although the recently concluded CLEOPATRA trial showed clinical benefits of combining trastuzumab and pertuzumab for treating HER2-positive metastatic breast cancer, trastuzumab monotherapy is still the mainstay in adjuvant settings. Since trastuzumab resistance occurs in over half of these cancers, we examined the mechanisms by which treatment of intrinsically trastuzumab-resistant and -sensitive tumors can benefit from the combination of these antibodies. F(ab′)2 of both trastuzumab and pertuzumab were generated and validated in order to separately analyze antibody-dependent cell-mediated cytotoxicity (ADCC)-based and direct biological effects of the antibodies. Compared to monotherapy, combination of the two antibodies at clinically permitted doses enhanced the recruitment of natural killer cells responsible for ADCC, and significantly delayed the outgrowth of xenografts from intrinsically trastuzumab-resistant JIMT-1 cells. Antibody dose-response curves of in vitro ADCC showed that antibody-mediated killing can be saturated, and the two antibodies exert an additive effect at sub-saturation doses. Thus, the additive effect in vivo indicates that therapeutic tissue levels likely do not saturate ADCC. Additionally, isobole studies with the in vitro trastuzumab-sensitive BT-474 cells showed that the direct biological effect of combined treatment is additive, and surpasses the maximum effect of either monotherapy. Our results suggest the combined therapy is expected to give results that are superior to monotherapy, whatever the type of HER2-positive tumor may be. The combination of both antibodies at maximum clinically approved doses should thus be administered to patients to recruit maximum ADCC and cause maximum direct biological growth inhibition.
Collapse
Affiliation(s)
- Gábor Tóth
- a Department of Biophysics and Cell Biology , Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| | - Árpád Szöőr
- a Department of Biophysics and Cell Biology , Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| | - László Simon
- a Department of Biophysics and Cell Biology , Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| | - Yosef Yarden
- b Department of Biological Regulation , The Weizmann Institute of Science , Rehovot , Israel
| | - János Szöllősi
- a Department of Biophysics and Cell Biology , Faculty of Medicine, University of Debrecen , Debrecen , Hungary.,c MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine
| | - György Vereb
- a Department of Biophysics and Cell Biology , Faculty of Medicine, University of Debrecen , Debrecen , Hungary.,c MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine.,d Faculty of Pharmacy, University of Debrecen , Debrecen , Hungary
| |
Collapse
|
8
|
Radbruch H, Bremer D, Mothes R, Günther R, Rinnenthal JL, Pohlan J, Ulbricht C, Hauser AE, Niesner R. Intravital FRET: Probing Cellular and Tissue Function in Vivo. Int J Mol Sci 2015; 16:11713-27. [PMID: 26006244 PMCID: PMC4463726 DOI: 10.3390/ijms160511713] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/13/2015] [Indexed: 12/02/2022] Open
Abstract
The development of intravital Förster Resonance Energy Transfer (FRET) is required to probe cellular and tissue function in the natural context: the living organism. Only in this way can biomedicine truly comprehend pathogenesis and develop effective therapeutic strategies. Here we demonstrate and discuss the advantages and pitfalls of two strategies to quantify FRET in vivo-ratiometrically and time-resolved by fluorescence lifetime imaging-and show their concrete application in the context of neuroinflammation in adult mice.
Collapse
Affiliation(s)
- Helena Radbruch
- Neuropathology, Charité-University of Medicine, Berlin 10117, Germany.
| | - Daniel Bremer
- Germany German Rheumatism Research Center, Berlin 10117, Germany.
| | - Ronja Mothes
- Neuropathology, Charité-University of Medicine, Berlin 10117, Germany.
- Germany German Rheumatism Research Center, Berlin 10117, Germany.
| | - Robert Günther
- Germany German Rheumatism Research Center, Berlin 10117, Germany.
| | | | - Julian Pohlan
- Neuropathology, Charité-University of Medicine, Berlin 10117, Germany.
- Germany German Rheumatism Research Center, Berlin 10117, Germany.
| | - Carolin Ulbricht
- Germany German Rheumatism Research Center, Berlin 10117, Germany.
- Immundynamics and Intravital Microscopy, Charité-University of Medicine, Berlin 10117, Germany.
| | - Anja E Hauser
- Germany German Rheumatism Research Center, Berlin 10117, Germany.
- Immundynamics and Intravital Microscopy, Charité-University of Medicine, Berlin 10117, Germany.
| | - Raluca Niesner
- Germany German Rheumatism Research Center, Berlin 10117, Germany.
| |
Collapse
|