1
|
Patient-derived head and neck tumor slice cultures: a versatile tool to study oncolytic virus action. Sci Rep 2022; 12:15334. [PMID: 36097280 PMCID: PMC9467994 DOI: 10.1038/s41598-022-19555-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Head and neck cancer etiology and architecture is quite diverse and complex, impeding the prediction whether a patient could respond to a particular cancer immunotherapy or combination treatment. A concomitantly arising caveat is obviously the translation from pre-clinical, cell based in vitro systems as well as syngeneic murine tumor models towards the heterogeneous architecture of the human tumor ecosystems. To bridge this gap, we have established and employed a patient-derived HNSCC (head and neck squamous cell carcinoma) slice culturing system to assess immunomodulatory effects as well as permissivity and oncolytic virus (OV) action. The heterogeneous contexture of the human tumor ecosystem including tumor cells, cancer-associated fibroblasts and immune cells was preserved in our HNSCC slice culturing approach. Importantly, the immune cell compartment remained to be functional and cytotoxic T-cells could be activated by immunostimulatory antibodies. In addition, we uncovered that a high proportion of the patient-derived HNSCC slice cultures were susceptible to the OV VSV-GP. More specifically, VSV-GP infects a broad spectrum of tumor-associated lineages including epithelial and stromal cells and can induce apoptosis. In sum, this human tumor ex vivo platform might complement pre-clinical studies to eventually propel cancer immune-related drug discovery and ease the translation to the clinics.
Collapse
|
2
|
Khademi-Shirvan M, Ghorbaninejad M, Hosseini S, Baghaban Eslaminejad M. The Importance of Stem Cell Senescence in Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1288:87-102. [PMID: 32026416 DOI: 10.1007/5584_2020_489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are an interesting tool in regenerative medicine and a unique cell-based therapy to treat aging-associated diseases. Successful MSC therapy needs a large-scale cell culture, and requires a prolonged in vitro cell culture that subsequently leads to cell senescence. Administration of senescent MSCs results in inefficient cell differentiation in the clinical setting. Therefore, it is of utmost importance to enhance our knowledge about the aging process and methods to detect cell senescence in order to overcome this challenge. Numerous studies have addressed senescence in various aspects. Here, we review the characteristics of MSCs, how aging affects their features, mechanisms involved in aging of MSCs, and potential approaches to detect MSC senescence in vitro.
Collapse
Affiliation(s)
- Maliheh Khademi-Shirvan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
3
|
Abstract
The outer layer of mammalian skin is a multilayered epithelium that perpetually renews multiple differentiated lineages. During homeostasis, the maintenance of skin epithelial turnover is ensured by regionalized populations of stem cells that largely remain dedicated to distinct epithelial lineages including squamous, follicular, sebaceous, Merkel, and sweat glands. Cutting edge developments in this field have focused on: (1) stem cell activation cues derived from a number of extrinsic sources including neurons, dermal fibroblasts and adipocyte, and immune cells; and (2) characterization of epithelial stem cell homeostasis via hierarchical versus stochastic paradigms. The techniques outlined in this chapter are designed to facilitate such studies and describe basic procedures for cutaneous stem cell isolation and purification, which are based on leveraging their unique expression of surface proteins for simultaneous targeting and purifying of multiple subpopulations in adult skin. In addition, protocols for assessment of in vitro and ex vivo progenitor capacity as well as techniques to visualize progenitor populations in whole skin are discussed.
Collapse
|
4
|
|
5
|
Iglesias-Bartolome R, Torres D, Marone R, Feng X, Martin D, Simaan M, Chen M, Weinstein LS, Taylor SS, Molinolo AA, Gutkind JS. Inactivation of a Gα(s)-PKA tumour suppressor pathway in skin stem cells initiates basal-cell carcinogenesis. Nat Cell Biol 2015; 17:793-803. [PMID: 25961504 PMCID: PMC4449815 DOI: 10.1038/ncb3164] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 03/18/2015] [Indexed: 02/07/2023]
Abstract
Genomic alterations in GNAS, the gene coding for the Gαs heterotrimeric G-protein, are associated with a large number human of diseases. Here, we explored the role of Gαs on stem cell fate decisions by using the mouse epidermis as a model system. Conditional epidermal deletion of Gnas or repression of PKA signaling caused a remarkable expansion of the stem cell compartment, resulting in rapid basal cell carcinoma formation. In contrast, inducible expression of active Gαs in the epidermis caused hair follicle stem cell exhaustion and hair loss. Mechanistically, we found that Gαs-PKA disruption promotes the cell autonomous Sonic Hedgehog pathway stimulation and Hippo signaling inhibition, resulting in the non-canonical activation of GLI and YAP1. Our study highlights an important tumor suppressive function of Gαs-PKA, limiting the proliferation of epithelial stem cells and maintaining proper hair follicle homeostasis. These findings can have broad implications in multiple pathophysiological conditions, including cancer.
Collapse
Affiliation(s)
- Ramiro Iglesias-Bartolome
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniela Torres
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Romina Marone
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiaodong Feng
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel Martin
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - May Simaan
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Min Chen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lee S Weinstein
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Susan S Taylor
- 1] Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA [2] Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - J Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
6
|
Interfering with stem cell-specific gatekeeper functions controls tumour initiation and malignant progression of skin tumours. Nat Commun 2015; 6:5874. [PMID: 25608467 PMCID: PMC4354047 DOI: 10.1038/ncomms6874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/14/2014] [Indexed: 12/17/2022] Open
Abstract
Epithelial cancer constitutes a major clinical challenge and molecular mechanisms underlying the process of tumour initiation are not well understood. Here we demonstrate that hair follicle bulge stem cells (SCs) give rise to well-differentiated sebaceous tumours and show that SCs are not only crucial in tumour initiation, but are also involved in tumour plasticity and heterogeneity. Our findings reveal that SC-specific expression of mutant Lef1, which mimics mutations found in human sebaceous tumours, drives sebaceous tumour formation. Mechanistically, we demonstrate that mutant Lef1 abolishes p53 activity in SCs. Intriguingly, mutant Lef1 induces DNA damage and interferes with SC-specific gatekeeper functions normally protecting against accumulations of DNA lesions and cell loss. Thus, normal control of SC proliferation is disrupted by mutant Lef1, thereby allowing uncontrolled propagation of tumour-initiating SCs. Collectively, these findings identify underlying molecular and cellular mechanisms of tumour-initiating events in tissue SCs providing a potential target for future therapeutic strategies. The presence of multiple stem and progenitor cells in the skin has a major impact on the formation of different epidermal tumours. Here the authors identify bulge stem cells as the cells of origin of sebaceous tumours through genetic lineage tracing and molecular studies in a mouse model.
Collapse
|
7
|
Purba TS, Haslam IS, Poblet E, Jiménez F, Gandarillas A, Izeta A, Paus R. Human epithelial hair follicle stem cells and their progeny: current state of knowledge, the widening gap in translational research and future challenges. Bioessays 2014; 36:513-25. [PMID: 24665045 DOI: 10.1002/bies.201300166] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epithelial hair follicle stem cells (eHFSCs) are required to generate, maintain and renew the continuously cycling hair follicle (HF), supply cells that produce the keratinized hair shaft and aid in the reepithelialization of injured skin. Therefore, their study is biologically and clinically important, from alopecia to carcinogenesis and regenerative medicine. However, human eHFSCs remain ill defined compared to their murine counterparts, and it is unclear which murine eHFSC markers really apply to the human HF. We address this by reviewing current concepts on human eHFSC biology, their immediate progeny and their molecular markers, focusing on Keratin 15 and 19, CD200, CD34, PHLDA1, and EpCAM/Ber-EP4. After delineating how human eHFSCs may be selectively targeted experimentally, we close by defining as yet unmet key challenges in human eHFSC research. The ultimate goal is to transfer emerging concepts from murine epithelial stem cell biology to human HF physiology and pathology.
Collapse
Affiliation(s)
- Talveen S Purba
- The Dermatology Centre, Salford Royal NHS Foundation Trust and Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
8
|
Genetic inducible fate mapping in adult mice using tamoxifen-dependent Cre recombinases. Methods Mol Biol 2014; 1194:113-39. [PMID: 25064100 DOI: 10.1007/978-1-4939-1215-5_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Cre/lox site-specific recombination system allows the control of gene activity in space and time in almost any tissue of the mouse. A major technical advance was the development of tamoxifen-dependent Cre recombinases, such as CreER(T2), that can be activated by administration of tamoxifen to the animal. This powerful tool greatly facilitates the study of gene functions and the generation of more realistic animal models of sporadic human diseases. Another important application of tamoxifen-dependent Cre recombinases is genetic inducible fate mapping (GIFM). In GIFM studies, the inducible Cre/lox system is used to genetically label a defined cell population at a selected time by irreversible activation of the expression of a Cre-responsive reporter transgene. Then, marked cells are detected at later time points to determine how the originally labeled progenitors contribute to specific structures and cell types during pre- and postnatal development. GIFM was initially applied during mouse embryogenesis, but is now increasingly used for cell lineage tracing in adult mice under physiological and pathophysiological conditions. Here we describe the design of GIFM experiments in adult mice as exemplified by CreER(T2)-assisted tracing of vascular smooth muscle cells during the development of atherosclerotic lesions. First, we give an overview of reporter transgenes available for genetic cell marking that are expressed from the Rosa26 locus, such as β-galactosidase and fluorescent proteins. Then we present detailed protocols for the generation of experimental mice for GIFM studies, the induction of cell labeling by tamoxifen treatment, and the detection of marked cells in fixed and live tissues. Each section also provides a discussion of limitations and common pitfalls of GIFM experiments. Most of the protocols can be easily adapted to other developmental stages, cell types, Cre recombinases, and reporter transgenes and, thus, can be used as general guidelines for GIFM studies in mice.
Collapse
|
9
|
Yan XZ, van den Beucken JJJP, Both SK, Yang PS, Jansen JA, Yang F. Biomaterial strategies for stem cell maintenance during in vitro expansion. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:340-54. [PMID: 24168361 DOI: 10.1089/ten.teb.2013.0349] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stem cells, having the potential for self-renewal and multilineage differentiation, are the building blocks for tissue/organ regeneration. Stem cells can be isolated from various sources but are, in general, available in too small numbers to be used directly for clinical purpose without intermediate expansion procedures in vitro. Although this in vitro expansion of undifferentiated stem cells is necessary, stem cells typically diminish their ability to self-renew and proliferate during passaging. Consequently, maintaining the stemness of stem cells has been recognized as a major challenge in stem cell-based research. This review focuses on the latest developments in maintaining the self-renewal ability of stem cells during in vitro expansion by biomaterial strategies. Further, this review highlights what should be the focus for future studies using stem cells for regenerative applications.
Collapse
Affiliation(s)
- Xiang-Zhen Yan
- 1 Department of Biomaterials, Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|