1
|
Gangrade A, Stephanopoulos N, Bhatia D. Programmable, self-assembled DNA nanodevices for cellular programming and tissue engineering. NANOSCALE 2021; 13:16834-16846. [PMID: 34622910 DOI: 10.1039/d1nr04475c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
DNA-based nanotechnology has evolved into an autonomous, highly innovative, and dynamic field of research at the nexus of supramolecular chemistry, nanotechnology, materials science, and biotechnology. DNA-based materials, including origami nanodevices, have started to emerge as an ideal scaffold for use in cellular programming, tissue engineering, and drug delivery applications. We cover herein the applications for DNA as a scaffold for interfacing with, and guiding, the activity of biological systems like cells and tissues. Although DNA is a highly programmable molecular building block, it suffers from a lack of functional capacity for guiding and modulating cells. Coupling DNA to biologically active molecules can bestow bioactivity to these nanodevices. The main goal of such nanodevices is to synthesize systems that can bind to cells and mimic the extracellular environment, and serve as a highly promising toolbox for multiple applications in cellular programming and tissue engineering. DNA-based programmable devices offer a highly promising approach for programming collections of cells, tissue engineering, and regenerative medicine applications.
Collapse
Affiliation(s)
- Ankit Gangrade
- Biological Engineering, Indian Institute of Technology Gandhinagar, India.
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, India.
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, India
| |
Collapse
|
2
|
Bhatia D, Arumugam S, Nasilowski M, Joshi H, Wunder C, Chambon V, Prakash V, Grazon C, Nadal B, Maiti PK, Johannes L, Dubertret B, Krishnan Y. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. NATURE NANOTECHNOLOGY 2016; 11:1112-1119. [PMID: 27548358 PMCID: PMC5122452 DOI: 10.1038/nnano.2016.150] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/15/2016] [Indexed: 05/07/2023]
Abstract
Functionalization of quantum dots (QDs) with a single biomolecular tag using traditional approaches in bulk solution has met with limited success. DNA polyhedra consist of an internal void bounded by a well-defined three-dimensional structured surface. The void can house cargo and the surface can be functionalized with stoichiometric and spatial precision. Here, we show that monofunctionalized QDs can be realized by encapsulating QDs inside DNA icosahedra and functionalizing the DNA shell with an endocytic ligand. We deployed the DNA-encapsulated QDs for real-time imaging of three different endocytic ligands-folic acid, galectin-3 (Gal3) and the Shiga toxin B-subunit (STxB). Single-particle tracking of Gal3- or STxB-functionalized QD-loaded DNA icosahedra allows us to monitor compartmental dynamics along endocytic pathways. These DNA-encapsulated QDs, which bear a unique stoichiometry of endocytic ligands, represent a new class of molecular probes for quantitative imaging of endocytic receptor dynamics.
Collapse
Affiliation(s)
- Dhiraj Bhatia
- Chemical Biology of Membranes and Therapeutic Delivery unit, Institut Curie, PSL Research University, Institut national de la santé et de la recherche médicale, U 1143, Centre national de la recherche scientifique, Unité mixte de recherche 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra, Bellary Road, Bangalore 560065, India
| | - Senthil Arumugam
- Chemical Biology of Membranes and Therapeutic Delivery unit, Institut Curie, PSL Research University, Institut national de la santé et de la recherche médicale, U 1143, Centre national de la recherche scientifique, Unité mixte de recherche 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Michel Nasilowski
- Laboratoire Physique et Etude des Matériaux UMR8213 École Supérieure de Physique et de Chimie Industrielles ParisTech-CNRS - Université Pierre et Marie Curie Sorbonne Universités 10 rue Vauquelin, 75005 Paris, France
| | - Himanshu Joshi
- Department of Physics, Center for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| | - Christian Wunder
- Chemical Biology of Membranes and Therapeutic Delivery unit, Institut Curie, PSL Research University, Institut national de la santé et de la recherche médicale, U 1143, Centre national de la recherche scientifique, Unité mixte de recherche 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Valérie Chambon
- Chemical Biology of Membranes and Therapeutic Delivery unit, Institut Curie, PSL Research University, Institut national de la santé et de la recherche médicale, U 1143, Centre national de la recherche scientifique, Unité mixte de recherche 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Ved Prakash
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra, Bellary Road, Bangalore 560065, India
- Department of Chemistry, The University of Chicago, 929 E, 57th Street, Chicago, Illinois 60637, USA
| | | | - Brice Nadal
- Nexdot, 10 rue Vauquelin, 75005 Paris, France
| | - Prabal K Maiti
- Department of Physics, Center for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| | - Ludger Johannes
- Chemical Biology of Membranes and Therapeutic Delivery unit, Institut Curie, PSL Research University, Institut national de la santé et de la recherche médicale, U 1143, Centre national de la recherche scientifique, Unité mixte de recherche 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Benoit Dubertret
- Laboratoire Physique et Etude des Matériaux UMR8213 École Supérieure de Physique et de Chimie Industrielles ParisTech-CNRS - Université Pierre et Marie Curie Sorbonne Universités 10 rue Vauquelin, 75005 Paris, France
| | - Yamuna Krishnan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra, Bellary Road, Bangalore 560065, India
- Department of Chemistry, The University of Chicago, 929 E, 57th Street, Chicago, Illinois 60637, USA
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, 5812 South Ellis Avenue, Chicago, Illinois 60637, USA
| |
Collapse
|
3
|
Nuthanakanti A, Srivatsan SG. Hierarchical self-assembly of switchable nucleolipid supramolecular gels based on environmentally-sensitive fluorescent nucleoside analogs. NANOSCALE 2016; 8:3607-3619. [PMID: 26804191 DOI: 10.1039/c5nr07490h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Exquisite recognition and folding properties have rendered nucleic acids as useful supramolecular synthons for the construction of programmable architectures. Despite their proven applications in nanotechnology, scalability and fabrication of nucleic acid nanostructures still remain a challenge. Here, we describe a novel design strategy to construct new supramolecular nucleolipid synthons by using environmentally-sensitive fluorescent nucleoside analogs, based on 5-(benzofuran-2-yl)uracil and 5-(benzo[b]thiophen-2-yl)uracil cores, as the head group and fatty acids, attached to the ribose sugar, as the lipophilic group. These modified nucleoside-lipid hybrids formed organogels driven by hierarchical structures such as fibers, twisted ribbons, helical ribbons and nanotubes, which depended on the nature of fatty acid chain and nucleobase modification. NMR, single crystal X-ray and powder X-ray diffraction studies revealed the coordinated interplay of various non-covalent interactions invoked by modified nucleobase, sugar and fatty acid chains in setting up the pathway for the gelation process. Importantly, these nucleolipid gels retained or displayed aggregation-induced enhanced emission and their gelation behavior and photophysical properties could be reversibly switched by external stimuli such as temperature, ultrasound and chemicals. Furthermore, the switchable nature of nucleolipid gels to chemical stimuli enabled the selective two channel recognition of fluoride and Hg(2+) ions through visual phase transition and fluorescence change. Fluorescent organogels exhibiting such a combination of useful features is rare, and hence, we expect that this innovative design of fluorescent nucleolipid supramolecular synthons could lead to the emergence of a new family of smart optical materials and probes.
Collapse
Affiliation(s)
- Ashok Nuthanakanti
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | | |
Collapse
|
4
|
Agostinelli E, Vianello F, Magliulo G, Thomas T, Thomas TJ. Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review). Int J Oncol 2015; 46:5-16. [PMID: 25333509 DOI: 10.3892/ijo.2014.2706] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/01/2014] [Indexed: 11/06/2022] Open
Abstract
Nanotechnology for cancer gene therapy is an emerging field. Nucleic acids, polyamine analogues and cytotoxic products of polyamine oxidation, generated in situ by an enzyme-catalyzed reaction, can be developed for nanotechnology-based cancer therapeutics with reduced systemic toxicity and improved therapeutic efficacy. Nucleic acid-based gene therapy approaches depend on the compaction of DNA/RNA to nanoparticles and polyamine analogues are excellent agents for the condensation of nucleic acids to nanoparticles. Polyamines and amine oxidases are found in higher levels in tumours compared to that of normal tissues. Therefore, the metabolism of polyamines spermidine and spermine, and their diamine precursor, putrescine, can be targets for antineoplastic therapy since these naturally occurring alkylamines are essential for normal mammalian cell growth. Intracellular polyamine concentrations are maintained at a cell type-specific set point through the coordinated and highly regulated interplay between biosynthesis, transport, and catabolism. In particular, polyamine catabolism involves copper-containing amine oxidases. Several studies showed an important role of these enzymes in developmental and disease-related processes in animals through the control of polyamine homeostasis in response to normal cellular signals, drug treatment, and environmental and/or cellular stress. The production of toxic aldehydes and reactive oxygen species (ROS), H2O2 in particular, by these oxidases suggests a mechanism by which amine oxidases can be exploited as antineoplastic drug targets. The combination of bovine serum amine oxidase (BSAO) and polyamines prevents tumour growth, particularly well if the enzyme has been conjugated with a biocompatible hydrogel polymer. The findings described herein suggest that enzymatically formed cytotoxic agents activate stress signal transduction pathways, leading to apoptotic cell death. Consequently, superparamagnetic nanoparticles or other advanced nanosystem based on directed nucleic acid assemblies, polyamine-induced DNA condensation, and bovine serum amine oxidase may be proposed for futuristic anticancer therapy utilizing nucleic acids, polyamines and BSAO. BSAO based nanoparticles can be employed for the generation of cytotoxic polyamine metabolites.
Collapse
Affiliation(s)
- Enzo Agostinelli
- Istituto Pasteur-Fondazione Cenci Bolognetti Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome and CNR, Institute of Biology and Molecular Pathology, 00185 Rome, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy and Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, Olomouc 77146, Czech Republic
| | - Giuseppe Magliulo
- Department Organi di Senso, Sapienza University of Rome, 00185 Rome, Italy
| | - Thresia Thomas
- Formerly Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - T J Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|