1
|
Hanauske T, Koretz CC, Jungenitz T, Roeper J, Drakew A, Deller T. Electrophysiologically calibrated optogenetic stimulation of dentate granule cells mitigates dendritic spine loss in denervated organotypic entorhino-hippocampal slice cultures. Sci Rep 2025; 15:4563. [PMID: 39915664 PMCID: PMC11802742 DOI: 10.1038/s41598-025-88536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Organotypic slice cultures (OTCs) are versatile tools for studying long-term structure-function relationships of neurons within a defined network (e.g. hippocampus). We developed a method for repeated experimenter-controlled activation of hippocampal granule cells (GCs) in OTCs within the incubator. After several days of contact-free photonic stimulation, we were able to ameliorate entorhinal denervation-induced structural damage in GCs. To achieve this outcome, we had to calibrate the intensity and duration of optogenetic (light) pulses using whole-cell electrophysiological recordings and multi-cell calcium imaging. Our findings showed that ChR2-expressing cells generated action potentials (APs) or calcium transients in response to illumination but were otherwise functionally indistinguishable from non-transduced GCs within the same neural circuit. However, the threshold for AP firing in single GCs varied based on the stimulus light intensity and the expression levels of ChR2. This information allowed us to calibrate light intensity for chronic stimulations. Denervated GCs exhibited significant spine loss four days post-denervation, but this detrimental effect was mitigated when AP firing was induced at a physiological GC bursting rate. Phototoxic damage caused by chronic light exposure was significantly reduced if illuminated with longer wavelength and by adding antioxidants to the culture medium. Our study presents a versatile approach for concurrent non-invasive manipulation and observation of neural circuit activity and remodeling in vitro.
Collapse
Affiliation(s)
- Tijana Hanauske
- Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Carolin Christina Koretz
- Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Institute for Neurophysiology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Tassilo Jungenitz
- Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Jochen Roeper
- Institute for Neurophysiology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Alexander Drakew
- Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Deller
- Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| |
Collapse
|
2
|
Huang TN, Hsu TT, Lin MH, Chuang HC, Hu HT, Sun CP, Tao MH, Lin JY, Hsueh YP. Interhemispheric Connectivity Potentiates the Basolateral Amygdalae and Regulates Social Interaction and Memory. Cell Rep 2019; 29:34-48.e4. [PMID: 31577954 DOI: 10.1016/j.celrep.2019.08.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/30/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
Impaired interhemispheric connectivity is commonly found in various psychiatric disorders, although how interhemispheric connectivity regulates brain function remains elusive. Here, we use the mouse amygdala, a brain region that is critical for social interaction and fear memory, as a model to demonstrate that contralateral connectivity intensifies the synaptic response of basolateral amygdalae (BLA) and regulates amygdala-dependent behaviors. Retrograde tracing and c-FOS expression indicate that contralateral afferents widely innervate BLA non-randomly and that some BLA neurons innervate both contralateral BLA and the ipsilateral central amygdala (CeA). Our optogenetic and electrophysiological studies further suggest that contralateral BLA input results in the synaptic facilitation of BLA neurons, thereby intensifying the responses to cortical and thalamic stimulations. Finally, pharmacological inhibition and chemogenetic disconnection demonstrate that BLA contralateral facilitation is required for social interaction and memory. Our study suggests that interhemispheric connectivity potentiates the synaptic dynamics of BLA neurons and is critical for the full activation and functionality of amygdalae.
Collapse
Affiliation(s)
- Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Tsan-Ting Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Ming-Hui Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Hsiu-Chun Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Hsiao-Tang Hu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - John Y Lin
- School of Medicine, University of Tasmania, TAS 7000, Australia
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC.
| |
Collapse
|
3
|
Mattingly M, Weineck K, Costa J, Cooper RL. Hyperpolarization by activation of halorhodopsin results in enhanced synaptic transmission: Neuromuscular junction and CNS circuit. PLoS One 2018; 13:e0200107. [PMID: 29969493 PMCID: PMC6029800 DOI: 10.1371/journal.pone.0200107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022] Open
Abstract
Optogenetics offers a unique method to regulate the activity of select neural circuits. However, the electrophysiological consequences of targeted optogenetic manipulation upon the entire circuit remain poorly understood. Analysis of the sensory-CNS-motor circuit in Drosophila larvae expressing eHpHR and ChR2-XXL revealed unexpected patterns of excitability. Optical stimulation of motor neurons targeted to express eNpHR resulted in inhibition followed by excitation of body wall contraction with repetitive stimulation in intact larvae. In situ preparations with direct electrophysiological measures showed an increased responsiveness to excitatory synaptic activity induced by sensory stimulation within a functional neural circuit. To ensure proper function of eNpHR and ChR2-XXL they were expressed in body wall muscle and direct electrophysiological measurements were obtained. Under eNpHR induced hyperpolarization the muscle remained excitable with increased amplitude of excitatory postsynaptic synaptic potentials. Theoretical models to explain the observations are presented. This study aids in increasing the understanding of the varied possible influences with light activated proteins within intact neural circuits.
Collapse
Affiliation(s)
- Matthew Mattingly
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kristin Weineck
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
- Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Jennifer Costa
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Robin L. Cooper
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
4
|
Laserspritzer: a simple method for optogenetic investigation with subcellular resolutions. PLoS One 2014; 9:e101600. [PMID: 24992677 PMCID: PMC4081651 DOI: 10.1371/journal.pone.0101600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 06/09/2014] [Indexed: 11/20/2022] Open
Abstract
To build a detailed circuit diagram in the brain, one needs to measure functional synaptic connections between specific types of neurons. A high-resolution circuit diagram should provide detailed information at subcellular levels such as soma, distal and basal dendrites. However, a limitation lies in the difficulty of studying long-range connections between brain areas separated by millimeters. Brain slice preparations have been widely used to help understand circuit wiring within specific brain regions. The challenge exists because long-range connections are likely to be cut in a brain slice. The optogenetic approach overcomes these limitations, as channelrhodopsin 2 (ChR2) is efficiently transported to axon terminals that can be stimulated in brain slices. Here, we developed a novel fiber optic based simple method of optogenetic stimulation: the laserspritzer approach. This method facilitates the study of both long-range and local circuits within brain slice preparations. This is a convenient and low cost approach that can be easily integrated with a slice electrophysiology setup, and repeatedly used upon initial validation. Our data with direct ChR2 mediated-current recordings demonstrates that the spatial resolution of the laserspritzer is correlated with the size of the laserspritzer, and the resolution lies within the 30 µm range for the 5 micrometer laserspritzer. Using olfactory cortical slices, we demonstrated that the laserspritzer approach can be applied to selectively activate monosynaptic perisomatic GABAergic basket synapses, or long-range intracortical glutamatergic inputs formed on different subcellular domains within the same cell (e.g. distal and proximal dendrites). We discuss significant advantages of the laserspritzer approach over the widely used collimated LED whole-field illumination method in brain slice electrophysiological research.
Collapse
|