1
|
Klemm J, Van Hazel C, Harris R. Regeneration following tissue necrosis is mediated by non-apoptotic caspase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605350. [PMID: 39091851 PMCID: PMC11291143 DOI: 10.1101/2024.07.26.605350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tissue necrosis is a devastating complication for many human diseases and injuries. Unfortunately, our understanding of necrosis and how it impacts surrounding healthy tissue - an essential consideration when developing methods to treat such injuries - has been limited by a lack of robust genetically tractable models. Our lab previously established a method to study necrosis-induced regeneration in the Drosophila wing imaginal disc, which revealed a unique phenomenon whereby cells at a distance from the injury upregulate caspase activity in a process called Necrosis-induced Apoptosis (NiA) that is vital for regeneration. Here we have further investigated this phenomenon, showing that NiA is predominantly associated with the highly regenerative pouch region of the disc, shaped by genetic factors present in the presumptive hinge. Furthermore, we find that a proportion of NiA fail to undergo apoptosis, instead surviving effector caspase activation to persist within the tissue and stimulate reparative proliferation late in regeneration. This proliferation relies on the initiator caspase Dronc, and occurs independent of JNK, ROS or mitogens associated with the previously characterized Apoptosis-induced Proliferation (AiP) mechanism. These data reveal a new means by which non-apoptotic Dronc signaling promotes regenerative proliferation in response to necrotic damage.
Collapse
Affiliation(s)
- Jacob Klemm
- School of Life Sciences, Arizona State University, Life Sciences E (LSE) 354, 427 Tyler Mall, Tempe, Arizona, 85287-4501
| | - Chloe Van Hazel
- School of Life Sciences, Arizona State University, Life Sciences E (LSE) 354, 427 Tyler Mall, Tempe, Arizona, 85287-4501
| | - Robin Harris
- School of Life Sciences, Arizona State University, Life Sciences E (LSE) 354, 427 Tyler Mall, Tempe, Arizona, 85287-4501
| |
Collapse
|
2
|
Nishida H, Albero AB, Onoue K, Ikegawa Y, Sulekh S, Sakizli U, Minami Y, Yonemura S, Wang YC, Yoo SK. Necrosensor: a genetically encoded fluorescent sensor for visualizing necrosis in Drosophila. Biol Open 2024; 13:bio060104. [PMID: 38156558 PMCID: PMC10836653 DOI: 10.1242/bio.060104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
Historically, necrosis has been considered a passive process, which is induced by extreme stress or damage. However, recent findings of necroptosis, a programmed form of necrosis, shed a new light on necrosis. It has been challenging to detect necrosis reliably in vivo, partly due to the lack of genetically encoded sensors to detect necrosis. This is in stark contrast with the availability of many genetically encoded biosensors for apoptosis. Here we developed Necrosensor, a genetically encoded fluorescent sensor that detects necrosis in Drosophila, by utilizing HMGB1, which is released from the nucleus as a damage-associated molecular pattern (DAMP). We demonstrate that Necrosensor is able to detect necrosis induced by various stresses in multiple tissues in both live and fixed conditions. Necrosensor also detects physiological necrosis that occurs during spermatogenesis in the testis. Using Necrosensor, we discovered previously unidentified, physiological necrosis of hemocyte progenitors in the hematopoietic lymph gland of developing larvae. This work provides a new transgenic system that enables in vivo detection of necrosis in real time without any intervention.
Collapse
Affiliation(s)
- Hiroshi Nishida
- Division of Cell Physiology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, 650-0047, Japan
| | | | - Kenta Onoue
- Laboratory for Ultrastructural Research, RIKEN BDR, Kobe, 650-0047, Japan
| | - Yuko Ikegawa
- Laboratory of Molecular Cell Biology and Development, Kyoto University, Kobe, 650-0047, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, 650-0047, Japan
| | - Shivakshi Sulekh
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, 650-0047, Japan
- Division of Developmental Biology and Regenerative Medicine, Graduate School of Medicine, Kobe University, Kobe, 650-0047, Japan
| | - Ugurcan Sakizli
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, 650-0047, Japan
- Division of Developmental Biology and Regenerative Medicine, Graduate School of Medicine, Kobe University, Kobe, 650-0047, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN BDR, Kobe, 650-0047, Japan
- Department of Cell Biology, Tokushima University Graduate School of Medicine, Tokushima, 770-8503, Japan
| | - Yu-Chiun Wang
- Laboratory for Epithelial Morphogenesis, RIKEN BDR, Kobe, 650-0047, Japan
| | - Sa Kan Yoo
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, 650-0047, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, 650-0047, Japan
- Division of Developmental Biology and Regenerative Medicine, Graduate School of Medicine, Kobe University, Kobe, 650-0047, Japan
| |
Collapse
|
3
|
Huang Z, Ren S, Jiang Y, Wang T. PINK1 and Parkin cooperatively protect neurons against constitutively active TRP channel-induced retinal degeneration in Drosophila. Cell Death Dis 2016; 7:e2179. [PMID: 27054334 PMCID: PMC4855661 DOI: 10.1038/cddis.2016.82] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 01/28/2023]
Abstract
Calcium has an important role in regulating numerous cellular activities. However, extremely high levels of intracellular calcium can lead to neurotoxicity, a process commonly associated with degenerative diseases. Despite the clear role of calcium cytotoxicity in mediating neuronal cell death in this context, the pathological mechanisms remain controversial. We used a well-established Drosophila model of retinal degeneration, which involves the constitutively active TRPP365 channels, to study calcium-induced neurotoxicity. We found that the disruption of mitochondrial function was associated with the degenerative process. Further, increasing autophagy flux prevented cell death in TrpP365 mutant flies, and this depended on the PINK1/Parkin pathway. In addition, the retinal degeneration process was also suppressed by the coexpression of PINK1 and Parkin. Our results provide genetic evidence that mitochondrial dysfunction has a key role in the pathology of cellular calcium neurotoxicity. In addition, the results demonstrated that maintaining mitochondrial homeostasis via PINK1/Parkin-dependent mitochondrial quality control can potentially alleviate cell death in a wide range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Z Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,National Institute of Biological Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - S Ren
- National Institute of Biological Sciences, Beijing, China.,College of Biological Sciences, China Agricultural University, Beijing, China
| | - Y Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - T Wang
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|